一、环境配置
ubuntu20.04+python3.7+cuda10.2+pytorch1.10.1+cmake3.22+spconv2.1.21
# basic python libraries conda create --name centerpoint python=3.7 conda activate centerpoint #conda命令安装会从pkgs读取之前下载过的包,会更快 conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=10.2 git clone https://github.com/tianweiy/CenterPoint.git cd CenterPoint #安装依赖项 pip install -r requirements.txt # add CenterPoint to PYTHONPATH by adding the following line to ~/.bashrc (change the path accordingly) export PYTHONPATH="${PYTHONPATH}:PATH_TO_CENTERPOINT"
nuScenes dev-kit
pip install nuscenes-devkit==1.0.5
git clone https://github.com/tianweiy/nuscenes-devkit # add the following line to ~/.bashrc and reactivate bash (remember to change the PATH_TO_NUSCENES_DEVKIT value) export PYTHONPATH="${PYTHONPATH}:PATH_TO_NUSCENES_DEVKIT/python-sdk"
Cuda Extensions
cuda10.2之前已经安装过,直接在创建的conda环境中添加环境变量即可
# set the cuda path(change the path to your own cuda location) export PATH=/usr/local/cuda-10.0/bin:$PATH export CUDA_PATH=/usr/local/cuda-10.2 export CUDA_HOME=/usr/local/cuda-10.2 export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH # Rotated NMS cd ROOT_DIR/det3d/ops/iou3d_nms python setup.py build_ext --inplace # Deformable Convolution (Optional and only works with old torch versions e.g. 1.1) cd ROOT_DIR/det3d/ops/dcn python setup.py build_ext --inplace
APEX (Optional)
git clone https://github.com/NVIDIA/apex cd apex git checkout 5633f6 # recent commit doesn't build in our system pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
spconv
sudo apt-get install libboost-all-dev #安装依赖项 git clone https://github.com/traveller59/spconv.git --recursive cd spconv && git checkout 7342772 python setup.py bdist_wheel cd ./dist && pip install *
执行到第四行命令时报错,利用cmake编译的时候发现找不到pybind11下的cmakelist.txt编译文件,发现pybind11是另外一个仓库,在clone该项目时没有下载下来,所以单独clone了一下第三方仓库(检查third_party/pybind11包中是否为空,如果是空的,则需要单独下载其中的文件并放入pybind11中)
安装spconv之前安装cmake #pip install cmake
报错如下:
安装spconv的另一种办法直接pip install spconv
uhznagnauznaGitHub - traveller59/spconv: Spatial Sparse Convolution Librarya
二、下载数据集
https://www.nuscenes.org/nuscenes#download
# For nuScenes Dataset
└── NUSCENES_DATASET_ROOT
├── samples <-- key frames
├── sweeps <-- frames without annotation
├── maps <-- unused
├── v1.0-mini <-- metadata
下载v1.0-mini数据集即可,trainval数据集过大
进入tools/create_data.py文件修改版本信息为‘v1.0-mini’
进入centerpoint虚拟环境,在centerpoint路径下执行以下命令,数据生成
# python tools/create_data.py nuscenes_data_prep --root_path=/home/root123/Documents/CenterPoint-master/data/nuScenes --version="v1.0-mini" --nsweeps=10
三、配置参数开始训练(如果用pycharm执行,则需要改配置文件中的data路径等)
python ./tools/train.py ./configs/nusc/voxelnet/nusc_centerpoint_voxelnet_0075voxel_dcn.py
# python ./tools/train.py CONFIG_PATH
# CONFIG_PATH:要使用哪个模型
CenterPoint执行手顺_碎碎念。。。的博客-CSDN博客_nsweeps
bash setup.sh 报错:
在文件中查找替换:
再次执行bash setup.sh 成功如下:
参考如下博客第5条:
CenterPoint的环境配置error大全【已全部解决】_皮皮鲁与鲁西西�的博客-CSDN博客