- 详解:Grok中文版 _Grok 3 国内中文版本在线使用
人工智能
GrokAI是由XAI公司推出的一款尖端人工智能系统。作为该公司核心技术之一,GrokAI专注于推动人工智能在各行各业的实际应用,尤其在数据分析、自然语言处理(NLP)、自动化决策、机器学习等领域表现出色。Grok的最大亮点在于其强大的数据处理能力。它能够高效地从大量复杂数据中提取有价值的信息,并做出精准预测。借助深度学习与强化学习等先进技术,GrokAI具备自我学习的能力,可以通过不断的训练来优
- 【大模型学习】第八章 深入理解机器学习技术细节
好多渔鱼好多
AI大模型机器学习AI大模型人工智能
目录引言一、监督学习(SupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:房价预测二、无监督学习(UnsupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:客户细分三、强化学习(ReinforcementLearning)1.定义与工作原理2.常见应用场景3.应用场景示例:游戏AI四、集成学习(EnsembleLearning)1.
- AI语言模型的技术之争:DeepSeek与ChatGPT的架构与训练揭秘
m0_74825466
面试学习路线阿里巴巴chatgpt人工智能语言模型
-CSDN博客目录第一章:DeepSeek与ChatGPT的基础概述1.1DeepSeek简介1.2ChatGPT简介第二章:模型架构对比2.1Transformer架构:核心相似性2.2模型规模与参数第三章:训练方法与技术3.1预训练与微调:基础训练方法3.2强化学习与奖励建模3.3知识蒸馏与量化技术第四章:训练数据与应用4.1训练数据集:数据源的差异4.2特定领域任务:应用场景的差异第五章:代
- 自然语言模型(NLP)介绍
Liudef06
StableDiffusion自然语言处理人工智能
一、自然语言模型概述自然语言模型(NLP)通过模拟人类语言理解和生成能力,已成为人工智能领域的核心技术。近年来,以DeepSeek、GPT-4、Claude等为代表的模型在技术突破和应用场景上展现出显著优势。例如,DeepSeek通过强化学习提升推理能力,其混合专家架构(MoE)显著优化了计算效率。二、核心技术解析1.DeepSeek模型架构混合专家模型(MoE):DeepSeek-V3采用Mo
- Search-o1:智体搜索增强的大型推理模型
三谷秋水
机器学习大模型人工智能人工智能深度学习机器学习
25年1月来自人大和清华的论文“Search-o1:AgenticSearch-EnhancedLargeReasoningModels”。大型推理模型(LRM)(例如OpenAI-o1)已通过大规模强化学习展示长步推理能力。然而,它们的扩展推理过程通常会受到知识不足的影响,从而导致频繁出现不确定性和潜在错误。为了解决这一限制,引入Search-o1,这是一个使用智体检索增强生成(RAG)机制和用
- 强化学习实践 openai gymnasium CartPole-v1 DQN算法实现
abstcol
强化学习深度学习机器学习神经网络
文章目录前言DQN简介环境简介任务实现说开来去我的Github实现:gym(GitHub)本篇博客主要是个人实现过程的主观感受,如果想要使用模型可以直接去GitHub仓库,注释完善且规范。觉得有用请给我点个star!前言最近在学习强化学习,大致过了一遍强化学习的数学原理(视频)。视频讲的很好,但是实践的部分总是感觉有点匮乏(毕竟解决gridworld方格世界(GitHub)的问题的很难给人特别大的
- 强化学习是否能够在完全不确定的环境中找到一个合理的策略,还是说它只能在已知规则下生效?
concisedistinct
人工智能人工智能强化学习
强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,广泛应用于机器人控制、自动驾驶、游戏策略和金融决策等领域。其核心理念是通过与环境的互动,不断学习如何选择最优行动以最大化累积奖励。尽管强化学习在许多已知和相对确定的环境中表现出色,但在面对完全不确定或动态变化的环境时,其表现和可靠性是否依然能保持一致是一个值得深入探讨的问题。我们生活的世界充满了不确定性,尤其是在
- 清华大学DeepSeek PPT第二版深度解读:人工智能前沿技术解析
qudongmofashi
人工智能
立即下载完整课件资料点击此处获取最新版PPT一、DeepSeek课件为何值得关注?清华大学出品的DeepSeek系列教学资源,长期聚焦人工智能领域核心技术。第二版PPT从以下方面实现全面升级:AI前沿技术覆盖:涵盖大模型、深度强化学习等领域最新研究进展工业级实践案例:新增多个企业级项目解决方案案例三维知识框架:从算法原理→代码实现→工程部署的全链路解析下载建议:建议保存至本地,结合源码案例同步学习
- PyTorch 中结合迁移学习和强化学习的完整实现方案
小赖同学啊
人工智能pytorch迁移学习人工智能
结合迁移学习(TransferLearning)和强化学习(ReinforcementLearning,RL)是解决复杂任务的有效方法。迁移学习可以利用预训练模型的知识加速训练,而强化学习则通过与环境的交互优化策略。以下是如何在PyTorch中结合迁移学习和强化学习的完整实现方案。1.场景描述假设我们有一个任务:训练一个机器人手臂抓取物体。我们可以利用迁移学习从一个预训练的视觉模型(如ResNet
- 【机器学习】Reinforcement Learning-强化学习基本概念
长相忆兮长相忆
深度学习人工智能算法机器学习
1、Q值与V值1.1Q值和V值的定义Q值:也称为动作价值函数,评估动作的价值,它代表了智能体选择这个动作后,一直到最终状态奖励总和的期望,表示为Q(s,a),其中s是状态,a是动作。V值:评估状态的价值,也称为状态价值函数,表示为V(s),其中s是状态。它代表了智能体在这个状态下,一直到最终状态的奖励总和的期望。V值与动作无关只与状态有关。Q值和V值的概念是一致的,都是衡量在马可洛夫树上某一个节点
- SFT与RLHF的关系
一只积极向上的小咸鱼
人工智能
在大模型训练中,SFT(监督微调)和RLHF(基于人类反馈的强化学习)是相互关联但目标不同的两个阶段,通常需要结合使用以优化模型性能,而非互相替代。以下是关键要点:1.核心关系SFT:基于标注的高质量样本(如问答对、指令-回答数据),以监督学习方式直接调整模型参数,使模型初步掌握特定任务(如对话生成)的基础能力。作用:快速适配下游任务,让模型学会"如何正确生成内容"。RLHF:通过人类对模型输出的
- 蚂蚁技术研究院发布推理大模型强化学习框架,邀请开发者共同助力 AGI 生态
开源开源项目介绍
2月25日,蚂蚁技术研究院正式开源强化学习框架AReaL(AntReasoningRL)。AReaL源自开源项目ReaLHF,旨在训练每个人都可以复现和贡献的大型推理模型(LRM)。AReaL是蚂蚁技术研究院为开发一个完全开放和包容的AGI世界迈出的一步。1.完全开放与可复现我们承诺持续发布与训练LRM相关的所有代码、数据集和训练流程。所有核心组件全部开源,无需担心专有限制或隐藏细节,开发者可无阻
- DeepSeek-R1:通过强化学习激励大型语言模型的推理能力
AI专题精讲
大模型专题系列语言模型人工智能自然语言处理
摘要我们介绍了第一代推理模型DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练而成的模型,无需监督微调(SFT)作为初步步骤,展示了卓越的推理能力。通过RL,DeepSeek-R1-Zero自然涌现出许多强大而有趣的推理行为。然而,它也面临诸如可读性差和语言混合等挑战。为了解决这些问题并进一步提升推理性能,我们引入了Dee
- DeepSeek-R1 技术报告解读:用强化学习激发大模型的推理潜能
跑起来总会有风
aiAI编程论文阅读
文章目录1.背景2.DeepSeek-R1训练流程2.1DeepSeek-R1-Zero:纯强化学习2.2DeepSeek-R1:冷启动+多阶段训练3.蒸馏小模型3.1蒸馏流程与优势3.2蒸馏vs.直接RL4.实验结果4.1主模型表现4.2蒸馏模型表现5.关键创新与思考6.总结参考链接**导读:**DeepSeek-R1是近期发布的一款开源大模型,它将纯强化学习与多阶段训练策略相结合,大幅提升了模
- 强化学习与网络安全资源-论文和环境
AI拉呱
web安全安全
TableofContentsRL-EnvironmentsPapersBooksBlogpostsTalksMiscellaneous↑EnvironmentsPentestingTrainingFrameworkforReinforcementLearningAgents(PenGym)TheARCDPrimary-levelAITrainingEnvironment(PrimAITE)CSL
- 基础篇(二)从监督学习到强化学习:机器学习的不同范式
带上一无所知的我
智能体的自我修炼:强化学习指南机器学习人工智能基础篇
从监督学习到强化学习:机器学习的不同范式在机器学习的广阔领域中,监督学习和强化学习是两种最重要的范式。它们各自有其独特的特点和应用场景,但也存在紧密的联系。本文将从监督学习出发,逐步延伸到强化学习,帮助你理解这两种范式的区别与联系,以及它们在实际中的应用。1.监督学习:从标注数据中学习1.1什么是监督学习?监督学习是机器学习中最常见的范式之一。它通过从标注数据中学习,建立输入(特征)与输出(标签)
- Matlab 大量接单
matlabgoodboy
matlab开发语言
分享一个matlab接私活、兼职的平台1、技术方向满足任一即可2、技术要求3、最后技术方向满足即可MATLAB:熟练掌握MATLAB编程语言,能够使用MATLAB进行数据处理、机器学习和深度学习等相关工作。机器学习、深度学习、强化学习、仿真、复现、算法、神经网络、建模、图像识别、数据挖掘、数据获取、爬虫、数据分析、目标检测、算法创新、因子分析、相关分析、方差分析、判别分析、方程分析、线性回归、中介
- 强化学习的数学原理-六、随机近似与随机梯度下降
儒雅芝士
pythonnumpy机器学习
代码来自up主【强化学习的数学原理-作业】GridWorld示例代码(已更新至DQN、REINFORCE、A2C)_哔哩哔哩_bilibiliSGD、GD、MGD举例:#先初始化一个列表,未来要在这100个样本里面再sample出来np.random.seed(0)X=np.linspace(-10,10,1000)Y=2*X**2+3*X+5#用作真实值#定义二次函数,找到一组参数a、b、c使得
- 模型优化之强化学习(RL)与监督微调(SFT)的区别和联系
搏博
深度学习人工智能机器学习架构transformer
强化学习(RL)与监督微调(SFT)是机器学习中两种重要的模型优化方法,它们在目标、数据依赖、应用场景及实现方式上既有联系又有区别。想了解有关deepseek本地训练的内容可以看我的文章:本地基于GGUF部署的DeepSeek实现轻量级调优之一:提示工程(PromptEngineering)(完整详细教程)_deepseekgguf-CSDN博客本地基于GGUF部署的DeepSeek实现轻量级调优
- DeepSeek R1 详解:思维链、强化学习和蒸馏
前网易架构师-高司机
2025年最新-深度学习+AIDeepSeek和AI工具深度学习Deepseek
目录思维链强化学习蒸馏DeepSeek是如何做到的?训练过程较小模型基准为什么Deepseek很重要DeepSeekR1常见问题解答来自中国的新型大型语言模型DeepSeekR1的发布在人工智能研究界引起了轰动。这不仅仅是又一次渐进式改进。DeepSeek代表着一次重大飞跃。大多数新的人工智能模型感觉都像是小步前进,DeepSeek-R1则不同。Deepseek的基准在推理任务(数学、编码和科学)
- 强化学习探索与利用:多臂老虎机的UCB与Softmax策略
海棠AI实验室
智元启示录深度学习人工智能机器学习USBSoftmax
目录引言多臂老虎机问题概述ε-贪心算法(ε-Greedy)上置信界(UCB,UpperConfidenceBound)软max策略(Softmax)算法对比与评估实验与结果总结与展望参考文献引言多臂老虎机问题(Multi-ArmedBandit,MAB)是强化学习领域中的一个经典问题,广泛应用于广告推荐、网页优化、金融交易、医疗决策等场景。其核心挑战在于如何平衡探索(exploration)和利用
- 程序员未来的出路:行业趋势与职业发展分析
guzhoumingyue
AIpython
随着技术的发展和行业需求的变化,程序员的职业出路也在不断演变。以下是程序员未来可能的职业发展方向及具体建议:一、技术深耕路线AI与机器学习专家趋势:AI技术在各行业的应用日益广泛,从自动驾驶到智能客服,需求持续增长。技能要求:Python、TensorFlow、PyTorch、数据挖掘、算法优化。发展路径:从机器学习工程师做起,积累项目经验。深入研究深度学习、强化学习等前沿技术。成为AI架构师或数
- 强化学习——基本概念
AI大模型探索者
人工智能ai深度学习机器学习语言模型
何为强化学习机器学习的一大分支强化学习(ReinforcementLearning)是机器学习的一种,它通过与环境不断地交互,借助环境的反馈来调整自己的行为,使得累计回报最大。强化学习要解决的是决策问题——求取当前状态下最优行为或行为概率。强化学习包括智能体和环境两大对象,智能体是算法本身,环境是与智能体交互的外部。智能体(IntelligentAgent),在人工智能领域,智能体指一个可以观察周
- 【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)
@橘柑橙柠桔柚
python算法人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果2.1有/无策略奖励2.2训练结果12.2训练结果23参考文献4Python代码、数据、文章1概述文献来源:根据微电网或微能源网是否与主电网相连接,可将其分为并网型和独立型2种。本文以并网型微能源网为研究对象,研究其并网运行的能量管理与优化问题。目前,
- 深入详解人工智能机器学习:强化学习
猿享天开
人工智能基础知识学习人工智能机器学习强化学习
目录强化学习概述强化学习的基本概念定义关键组件强化学习过程常用算法应用示例示例代码代码解释应用场景强化学习核心概念和底层原理核心概念底层原理总结强化学习概述强化学习(ReinforcementLearning,RL)是机器学习中的一个重要领域,其核心目标是通过与环境的交互学习如何采取行动以最大化累积奖励。与监督学习不同的是,强化学习不依赖于给定的输入输出对,而是通过试探和反馈不断改进决策策略。强化
- 机器学习:强化学习的epsilon贪心算法
田乐蒙
PythonML机器学习贪心算法人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,旨在通过与环境交互,使智能体(Agent)学习如何采取最优行动,以最大化某种累积奖励。它与监督学习和无监督学习不同,强调试错探索(Exploration-Exploitation)以及基于奖励信号的学习。强化学习任务通常用马尔可夫决策过程来描述:机器处于环境EEE中,状态空间XXX,其中每个状态x∈Xx\inXx∈X是
- DeepSeek R1 简单指南:架构、训练、本地部署和硬件要求
爱喝白开水a
人工智能AI大模型DeepSeekR1DeepSeek算法人工智能训练大模型部署
DeepSeek推出的LLM推理新策略DeepSeek最近发表的论文DeepSeek-R1中介绍了一种创新的方法,通过强化学习(RL)提升大型语言模型(LLM)的推理能力。这项研究在如何仅依靠强化学习而不是过分依赖监督式微调的情况下,增强LLM解决复杂问题的能力上,取得了重要进展。DeepSeek-R1技术概述模型架构DeepSeek-R1不是一个单独的模型,而是包括DeepSeek-R1-Zer
- 扑克强化学习:DouZero/douzero/dmc/dmc.py (train)
强化学习曾小健
python人工智能深度学习
deftrain(flags):"""Thisisthemainfuntionfortraining.Itwillfirstinitilizeeverything,suchasbuffers,optimizers,etc.Thenitwillstartsubprocessesasactors.Then,itwillcalllearningfunctionwithmultiplethreads.""
- 智能路径规划:从数学建模到算法优化的理论与实践
木子算法
人工智能数学建模数学建模算法人工智能
智能路径规划:从数学建模到算法优化的理论与实践一、引言在机器人学、自动驾驶、物流调度等领域,路径规划是实现自主导航的核心技术。从经典的Dijkstra算法到前沿的强化学习方法,路径规划技术的发展始终依赖于数学建模与算法优化的深度结合。本文将系统构建路径规划的理论框架,通过数学公式推导核心算法原理,并结合MATLAB代码实现完整的技术闭环。二、路径规划的数学基础(一)状态空间建模路径规划的本质是在状
- 【人工智能算法】人工智能算法都包括什么?请详细列出和解释
资源存储库
算法强化学习人工智能算法
目录人工智能算法都包括什么?请详细列出和解释1.机器学习算法(MachineLearningAlgorithms)监督学习算法(SupervisedLearning)无监督学习算法(UnsupervisedLearning)强化学习算法(ReinforcementLearning)2.进化算法(EvolutionaryAlgorithms)3.模拟退火(SimulatedAnnealing)4.粒
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found