PyTorch深度学习快速入门教程【小土堆】.
一、最大池化操作示例
二、nn.MaxPool2d类的使用
作用:对于输入信号的输入通道,提供2维最大池化(max pooling)操作。
三、池化公式
from torch.nn import Conv2d
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
class Model(nn.Module):
def __init__(self):
super().__init__() # 父类参数初始化
self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True) # 创建一个实例化
self.maxpool2 = MaxPool2d(kernel_size=3, ceil_mode=False) # 创建一个实例化
def forward(self, input, num):
if num == 1:
output = self.maxpool1(input)
else:
output = self.maxpool2(input)
return output
#---------------示例1:二维张量---------------#
# 二维张量,最大池化层的输入应该是torch.float32类型
input = torch.tensor([[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]], dtype=torch.float32)
# 转化为四维张量,batch_size(数据个数)自动计算,,通道数是1,数据维度是5*5
input = torch.reshape(input, (-1, 1, 5, 5))
print(input.shape) # torch.Size([1, 1, 5, 5])
model = Model() # 创建一个实例
output1 = model(input, 1) # 父类__call__
output2 = model(input, 2) # 父类__call__
print(output1)
print(output2) # tensor([[[[2.]]]])
#---------------示例1:数据集---------------#
dataset = torchvision.datasets.CIFAR10(root="./dataset", train=False,
transform=torchvision.transforms.ToTensor()) # 创建实例
dataloader = DataLoader(dataset, batch_size=64) # 创建实例
step = 0
writer = SummaryWriter("./dataloader_logs") # 创建实例
for data in dataloader:
imgs, targets = data
writer.add_images("input", imgs, step)
output = model(imgs, 1) # 父类__call__
# 池化后,通道数不会变,不用reshape
writer.add_images("output", output, step)
step += 1
# tensorboard命令:tensorboard --logdir=dataloader_logs --port=6007
输出:
torch.Size([1, 1, 5, 5])
tensor([[[[2., 3.],
[5., 1.]]]])
tensor([[[[2.]]]])
TensorBoard输出:
卷积后通道数可能会变,池化后通道数不会变。