1. 进行一次torch.autograd.grad或者loss.backward()后前向传播都会清空,因此想反复传播必须要加上retain_graph=True。
2.torch.autograd.grad是返回一个列表,对应你所列参数的梯度。而backward()则是对parameter中的grad项进行赋值。
from torch.autograd import Variable
import torch
import torch.nn as nn
class g(nn.Module):
def __init__(self):
super(g, self).__init__()
self.k1 = nn.Conv2d(in_channels=2, out_channels=2, kernel_size=1, padding=0, bias=False)
self.k = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=1, padding=0, bias=False)
def forward(self, z):
# a, b = torch.topk(z, 2, dim=-1, largest=True, sorted=True)
# return a
return self.k(self.k1(z))
c = 2
h = 5
w = 5
z = torch.arange(0, c * h * w).float().view(1, c, h, w)
z = Variable(z)
gg = g()
r = gg(z)
r = r.sum()
loss = (r - 1) * (r - 1)
#
# gg.zero_grad()
grad = torch.autograd.grad(loss, gg.parameters(),retain_graph=True)
print(grad)
loss.backward()
for k,v in gg.named_parameters():
print(k)
print(v.grad.data)
# print(v)
print("******************")
for k,v in gg.named_parameters():
print(v.grad.data)
v.data.sub_(v.grad.data * 0.01)
print("******************")
for k,v in gg.named_parameters():
print(v)