基于pytorch来讲
MSELoss()多用于回归问题,也可以用于one_hotted编码形式,
CrossEntropyLoss()名字为交叉熵损失函数,不用于one_hotted编码形式
MSELoss()要求batch_x与batch_y的tensor都是FloatTensor类型
CrossEntropyLoss()要求batch_x为Float,batch_y为LongTensor类型
(1)CrossEntropyLoss() 举例说明:
比如二分类问题,最后一层输出的为2个值,比如下面的代码:
class CNN (nn.Module ) :
def __init__ ( self , hidden_size1 , output_size , dropout_p) :
super ( CNN , self ).__init__ ( )
self.hidden_size1 = hidden_size1
self.output_size = output_size
self.dropout_p = dropout_p
self.conv1 = nn.Conv1d ( 1,8,3,padding =1)
self.fc1 = nn.Linear (8*500, self.hidden_size1 )
self.out = nn.Linear (self.hidden_size1,self.output_size )
def forward ( self , encoder_outputs ) :
cnn_out = F.max_pool1d ( F.relu (self.conv1(encoder_outputs)),2)
cnn_out = F.dropout ( cnn_out ,self.dropout_p) #加一个dropout
cnn_out = cnn_out.view (-1,8*500)
output_1 = torch.tanh ( self.fc1 ( cnn_out ) )
output = self.out ( ouput_1)
return output
最后的输出结果为:
上面一个tensor为output结果,下面为target,没有使用one_hotted编码。
cnn_optimizer = torch.optim.SGD(cnn.parameters(),learning_rate,momentum=0.9,\
weight_decay=1e-5)
criterion = nn.CrossEntropyLoss()
def train ( input_variable , target_variable , cnn , cnn_optimizer , criterion ) :
cnn_output = cnn( input_variable )
print(cnn_output)
print(target_variable)
loss = criterion ( cnn_output , target_variable)
cnn_optimizer.zero_grad ()
loss.backward( )
cnn_optimizer.step( )
#print('loss: ',loss.item())
return loss.item() #返回损失
说明CrossEntropyLoss()是output两位为one_hotted编码形式,但target不是one_hotted编码形式。
(2)MSELoss() 举例说明:
网络结构不变,但是标签是one_hotted编码形式。下面的图仅做说明,网络结构不太对,出来的预测也不太对。
如果target不是one_hotted编码形式会报错,报的错误如下。
目前自己理解的两者的区别,就是这样的,至于多分类问题是不是也是样的有待考察。
MSELoss就是target不是one hot的形式
CrossEntropyLoss 是one hot的形式
而这一点再torch的bert代码里面也有体现:
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
再补充下,做多标签分类的时候,如果标签是关联的,用CrossEntropyLoss
--CrossEntropyLoss用于多类别分类,输出和目标的维度是(batch,C),batch是样本数量,C是类别数量,每一个C之间是互斥的,相互关联的,对于每一个batch的C个值,一起求每个C的softmax,所以每个batch的所有C个值之和是1,哪个值大,代表其属于哪一类。如果用于二分类,那输出和目标的维度是(batch,2)
如果标签是不关联的,用BCEWithLogitsLoss
(BCELoss)BCEWithLogitsLoss用于单标签二分类或者多标签二分类,输出和目标的维度是(batch,C),batch是样本数量,C是类别数量,对于每一个batch的C个值,对每个值求sigmoid到0-1之间,所以每个batch的C个值之间是没有关系的,相互独立的,所以之和不一定为1。每个C值代表属于一类标签的概率。如果是单标签二分类,那输出和目标的维度是(batch,1)即可。
参考:
https://blog.csdn.net/xiaohuihui1994/article/details/93049975
https://www.jb51.net/article/177707.htm