win10+cuda10.1+anaconda+tensorflow2.1安装步骤

Anaconda安装


我们将使用Anaconda作为IDE,搭建我们的TensorFlow框架。
我们打开Anaconda的下载页,(Anaconda下载页)选择正确的系统,选择Python最新版本的下载链接即可开始下载。

(Anaconda下载页界面)
下载完成后,我们打开Anaconda的安装包,一直点击next/I agree。在出现下图所示页面时(现在是Python3.7,用的是之前的图片),勾选“Add Anaconda to my PATH environment variable”。有些安装教程上不推荐勾选这一项。勾选此项的目的是给Anaconda添加环境变量,让我们的计算机能够感知到它的存在,以便我们通过命令行调用Anaconda的程序。

在这里插入图片描述
Anaconda的安装过程总共为5-10分钟,占用空间大小约为2-3GB,请先预留好磁盘空间。
安装完成后,我们来检测一下Anaconda是否安装成功。按下Win+R组合键,输出cmd打开命令提示符,键入conda list查看当前Python环境安装的库。若为新安装的Python环境,那么显示的库均为Anaconda自带的软件库。如果键入conda list命令能够返回一系列Python库列表信息,即说明Anaconda安装成功。若命令提示符无法识别conda命令,即说明安装失败。

cmd打开conda list
若之前未将Anaconda添入环境变量,我们打开Anaconda Prompt交互式命令终端,键入conda list,观察是否能够返回一系列Python库列表信息。

Anaconda Prompt打开conda list

设置anaconda源为清华镜像

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
#在下载时显示使用的源
conda config --set show_channel_urls yes

常用国内源:

# 清华
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

也可直接编辑用户目录下.condarc文件

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

CUDA安装


CUDA是基于NVIDIA显卡的加速库,我们安装它以利于深度学习框架在NVIDIA的GPU显卡的加速运算。但在我们开始安装CUDA之前,请先确认计算机上是否有支持CUDA程序的NVIDIA显卡设备。如果计算机上没有NVIDIA显卡,则无法安装CUDA程序,应直接进入TensorFlow框架的安装。
CUDA的安装主要分成三个步骤。第一步:下载CUDA安装包,完成CUDA软件的安装;第二步:下载并配置cuDNN深度神经网络加速库;第三步:配置环境变量。

CUDA软件安装
我们进入CUDA软件下载页 ,(CUDA下载页)选择
CUDA Toolkit 10.1 (Feb 2019), Online Documentation,点击之后依次选择Operating System,Version选择10,Installer Type选择exe(local),点击Download开始下载,安装包大小约为2.4GB。
(最新版本的TensorFlow2.1.0匹配的是10.1版本的CUDA Toolkit,因此我们下载10.1版本,否则后续TensorFlow框架的安装会出错,提示找不到动态链接库文件的信息)

CUDA下载页
安装包下载完毕后,打开安装软件,在选项中选择自定义安装方式,点击NEXT按钮进入安装程序选择列表。 在CUDA选项卡下,取消勾选“Visual Studio Intergration”一项。(这是因为我们并没有使用Visual Studio开发环境)在“Driver Components”选项卡下,比较当前版本信息和安装版本信息。若当前版本高于安装版本,则取消勾选“Display Driver”;若当前版本低于或等于安装版本,保留默认信息安装即可。

CUDA安装面板2

 CUDA安装面板3

 

安装完毕后,我们来测试一下CUDA是否安装成功。键入Win+R打开Windows命令提示符,键入nvcc -V,即可返回当前CUDA的版本信息。如果Windows命令提示符无法识别nvcc命令,则说明安装失败。(同时也可搜索CUDA的安装目录,找到“nvcc.exe”程序)

Windows命令提示符打开nvcc命令

 

cuDNN神经网络加速库安装


CUDA并非针对于神经网络加速的GPU加速库,如果希望针对神经网络进行加速,我们还需要安装额外的神经网络加速库cuDNN。cuDNN并非一个应用程序,我们只需将它下载下来并解压到CUDA的bin目录下即可。
打开cuDNN的下载页(cuDNN下载页),选择“Download cuDNN”。请注意,若要下载cuDNN,必须先登录NVIDIA的账户。因此,用户需要登录或者注册NVIDIA用户才可下载cuDNN。登录账户后,进入cuDNN的下载界面,勾选“I Agree To the Terms of the cuDNN Software License Agreement”,即可显示cuDNN的下载版本选项。(请注意:我们一定要选择与安装的CUDA版本相匹配的cuDNN,即选择Download cuDNN v7.6.5 (November 5th, 2019), for CUDA 10.1)

cuDNN版本选择
下载完成后,我们将其解压,并将里面的cuda文件夹重命名为cudnn765,复制到CUDA的安装目录下。此处可能弹出需要管理员权限的提示信息,点击继续即可。

 复制cudnn765文件夹

 
配置环境变量
上述步骤完成后已经表明cuDNN安装完成。但是,我们还需要让计算机感知到cuDNN文件的具体位置,因此我们需要配置系统环境变量。回到桌面,点击“此电脑”,右键选择“属性”,在“控制面板主页”中选择“高级系统设置”,在弹出的对话框中点击“环境变量”,进入环境变量编辑对话框。

环境变量

 

在“系统变量”一栏中找到Path变量,点击“新建”,键入cuDNN的安装路径“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\cudnn765\bin”,并点击“向上移动”将其置顶。
(这里说明一下,本人之前只是重命名了cuDNN的文件夹名,并非重命名了cuDNN里面的cuda文件夹,所以本人的环境变量为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\cudnn765\cuda\bin)

cuDNN环境变量配置

CUDA安装完毕后,系统环境变量应包括:“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\cudnn765\bin”;“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin”;“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp”。具体位置可能随着安装目录的不同而不同。确认无误后点击“确定”,退出环境变量的配置对话框。

TensorFlow安装


TensorFlow的安装同许多Python库一样,这里我选择使用anaconda 中pip命令即可安装。

首先打开anaconda prompt创建新的虚拟环境

conda create -n tensorflow-gpu-v2.1 python=3.6

win10+cuda10.1+anaconda+tensorflow2.1安装步骤_第1张图片

然后激活环境

conda activate tensorflow-gpu-v2.1

使用pip命令之前,如果版本过低,可以键入python -m pip install --upgrade pip命令更新。

win10+cuda10.1+anaconda+tensorflow2.1安装步骤_第2张图片
然后我们就可以安装对应版本的TensorFlow

pip install tensorflow-gpu==2.1

或者采用清华源进行安装“pip install -U tensorflow-gpu -i https://pypi.tuna.tsinghua.edu.cn/simple”,此命令将会自动下载TensorFlow并安装。“-U”参数指定如果已安装此包,则进行升级命令。

现在我们来测试TensorFlow2.1.0版本是否已经安装成功。

键入python打开Python命令终端。键入“import tensorflow as tf”命令,

 

若无错误提示信息,键入“tf.config.list_physical_devices(‘GPU’)”命令或者“tf.test.is_gpu_available()”命令。此命令会返回一系列以“I”(Information)开头的信息,其中含有可用的GPU显卡设备信息。此命令最终会返回“True”或“False”(键入“tf.test.is_gpu_available()”命令时)。如果为“True”,则代表TensorFlow的GPU版本安装成功。若返回的是“False”,则说明安装失败,需要重新检测CUDA,cuDNN的安装及其环境变量的配置。注意看返回的错误信息,重点检测是否是CUDA和cuDNN的版本与TensorFlow的版本不匹配。比如提示cudnn64_7.dll not found,将cudnn7.6.5/bin目录下的cudnn64_7.dll手动复制到CUDA/V10.1/bin目录下,然后重新键入tf.test.is_gpu_available()命令

win10+cuda10.1+anaconda+tensorflow2.1安装步骤_第3张图片

 

win10+cuda10.1+anaconda+tensorflow2.1安装步骤_第4张图片

 

如果不能安装TensorFlow的GPU版本,可以选择先安装TensorFlow的CPU版本先代替使用。CPU版本缺少GPU的加速运算,在性能上的表现不如GPU版本。亦或者,若读者经过多次尝试仍未成功安装TensorFlow的GPU版本,不妨先下载CPU版本作为临时替代。
安装CPU版本的命令为:“pip install -U tensorflow -i https://pypi.tuna.tsinghua.edu.cn/simple”。安装完成后,打开python交互式命令终端,键入“import tensorflow as tf”命令检测是否安装成功。
TensorFlow的GPU/CPU版本安装完成后,在python命令行中键入“tf.__version__”(注意是双下划线)即可查看TensorFlow版本信息。

 

最后,希望本文可以提供安装TensorFlow框架的帮助。
 

你可能感兴趣的:(python,深度学习,python,tensorflow,cuda)