CPU
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root = '../tmp/', train = True, download = True, transform = transform)
train_loader = DataLoader(dataset = train_dataset,
batch_size =batch_size,
shuffle = True,
num_workers = 2)
test_dataset = datasets.MNIST(root = '../tmp/', train = False, download = True, transform = transform)
test_loader = DataLoader(dataset = test_dataset,
batch_size = 1,
shuffle = False)
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size = 5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size = 5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320, 10)
def forward(self, x):
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1)
return self.fc(x)
model = Model()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum = 0.5)
def train(epoch):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
y_pred = model(inputs)
loss = criterion(y_pred, target)
loss.backward()
optimizer.step()
running_loss += loss
if i % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 300) )
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for i, data in enumerate(test_loader):
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %%' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(100):
train(epoch)
test()
GPU
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root = '../tmp/', train = True, download = True, transform = transform)
train_loader = DataLoader(dataset = train_dataset,
batch_size =batch_size,
shuffle = True,
num_workers = 2)
test_dataset = datasets.MNIST(root = '../tmp/', train = False, download = True, transform = transform)
test_loader = DataLoader(dataset = test_dataset,
batch_size = 1,
shuffle = False)
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size = 5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size = 5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320, 10)
def forward(self, x):
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1)
return self.fc(x)
model = Model()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum = 0.5)
def train(epoch):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, target = data
inputs = inputs.to(device)
target = target.to(device)
optimizer.zero_grad()
y_pred = model(inputs)
loss = criterion(y_pred, target)
loss.backward()
optimizer.step()
running_loss += loss
if i % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 300) )
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for i, data in enumerate(test_loader):
images, labels = data
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %%' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(100):
train(epoch)
test()