单通道,卷积做数乘:
先数乘再加:
每一个卷积核通道数量和输入通道数量一样!
卷积核总数量和输出通道数量一样!
卷积核数量和图片大小没关
想得到和原来一样的维度,padding怎么计算加外围多少层:(如图所示)
在这里import torch
input = [3,4,6,5,7,
2,4,6,8,2,
1,6,7,8,4,
9,7,4,6,2,
3,7,5,4,1]
# (1(batch),1(channel),5(width),5(height))
input = torch.Tensor(input).view(1, 1, 5, 5)
# 输入:1个通道,输出:1个通道
conv_layer = torch.nn.Conv2d(1, 1, kernel_size = 3, padding = 1, bias = False)
# 用view改变形状 (1(output),1(input),3(width),3(height))
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3)
#把张量赋给.data
conv_layer.weight.data = kernel.data
output = conv_layer(input)
print(output)
效果图:
步长:有效降低宽度,高度;
stride = 2
code:
conv_layer = torch.nn.Conv2d(1, 1, kernel_size = 3, stride=2, bias = False)
maxpooling:没有权重,在同一个通道里面做,不会在不同通道里,使用后,通道数量不会变。
CNN:
code:(单独,不可直接运行)
import torch
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320, 10) # 线性层
def forward(self, x):
# 先求batch_size,用张量.size()求,取第0个,即是维度(样本的数量)
# Flatten data from (n, 1, 28, 28) to (n, 784)
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(2)))
x = x.view(batch_size, -1) # flatten 平铺
x = self.fc(x)
return x
model = Net()
总的code:
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib as plt
batch_size = 64
transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, )) # 第一个(0.1307, )是均值,第二个是标准差
])
train_dataset = datasets.MNIST(root='../dataset/mnist',
train=True,
download=True,
transform=transforms)
train_loader = DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist',
train=False,
download=True,
transform=transforms)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320, 10) # 线性层
def forward(self, x):
# 先求batch_size,用张量.size()求,取第0个,即是维度(样本的数量)
# Flatten data from (n, 1, 28, 28) to (n, 784)
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1) # flatten 平铺 # -1 此处自动算出的是320
# print("x.shape",x.shape)
x = self.fc(x)
return x
model = Net()
# 使用GPU
if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"
device = torch.device(device)
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
# X:inputs,Y:target
inputs, target = data
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad()
# 前向+反向+更新
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch +1, batch_idx +1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1) # 算每一行最大值的下标是多少,其实也代表了每一行的分类 / max返回 每一行最大值是多少,每一行最大值的下标是多少
total += labels.size(0)
correct += (predicted == labels).sum().item() # ==预测的和原来的作比较,真为1,假为0,再总的加起来,求和后再把这个标量提出来
print('Accuracy on test set: %d %%' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()