python array 计算_python-计算两个numpy数组之间的距离

如果只需要每对点之间的距离,则无需计算完整的距离矩阵.

而是直接计算:

import numpy as np

x = np.array([[[1,2,3,4,5],

[5,6,7,8,5],

[5,6,7,8,5]],

[[11,22,23,24,5],

[25,26,27,28,5],

[5,6,7,8,5]]])

y = np.array([[[31,32,33,34,5],

[35,36,37,38,5],

[5,6,7,8,5]],

[[41,42,43,44,5],

[45,46,47,48,5],

[5,6,7,8,5]]])

xx = x.reshape(2, -1)

yy = y.reshape(2, -1)

dist = np.hypot(*(xx - yy))

print dist

为了进一步说明正在发生的事情,首先,我们对数组进行整形,使其具有2xN的形状(-1是一个占位符,告诉numpy自动沿该轴计算正确的大小):

In [2]: x.reshape(2, -1)

Out[2]:

array([[ 1, 2, 3, 4, 5, 5, 6, 7, 8, 5, 5, 6, 7, 8, 5],

[11, 22, 23, 24, 5, 25, 26, 27, 28, 5, 5, 6, 7, 8, 5]])

因此,当我们减去xx和yy时,将得到一个2xN数组:

In [3]: xx - yy

Out[3]:

array([[-30, -30, -30, -30, 0, -30, -30, -30, -30, 0, 0, 0, 0,

0, 0],

[-30, -20, -20, -20, 0, -20, -20, -20, -20, 0, 0, 0, 0,

0, 0]])

然后,我们可以将其解压缩为dx和dy组件:

In [4]: dx, dy = xx - yy

In [5]: dx

Out[5]:

array([-30, -30, -30, -30, 0, -30, -30, -30, -30, 0, 0, 0, 0,

0, 0])

In [6]: dy

Out[6]:

array([-30, -20, -20, -20, 0, -20, -20, -20, -20, 0, 0, 0, 0,

0, 0])

并计算距离(np.hypot等于np.sqrt(dx ** 2 dy ** 2)):

In [7]: np.hypot(dx, dy)

Out[7]:

array([ 42.42640687, 36.05551275, 36.05551275, 36.05551275,

0. , 36.05551275, 36.05551275, 36.05551275,

36.05551275, 0. , 0. , 0. ,

0. , 0. , 0. ])

或者,我们可以自动完成拆包并一步一步完成:

In [8]: np.hypot(*(xx - yy))

Out[8]:

array([ 42.42640687, 36.05551275, 36.05551275, 36.05551275,

0. , 36.05551275, 36.05551275, 36.05551275,

36.05551275, 0. , 0. , 0. ,

0. , 0. , 0. ])

如果要计算其他类型的距离,只需将np.hypot更改为您要使用的函数.例如,对于曼哈顿/城市街区距离:

In [9]: dist = np.sum(np.abs(xx - yy), axis=0)

In [10]: dist

Out[10]: array([60, 50, 50, 50, 0, 50, 50, 50, 50, 0, 0, 0, 0, 0, 0])

你可能感兴趣的:(python,array,计算)