Open3D is an open-source library that supports rapid development of software that deals with 3D data. The Open3D frontend exposes a set of carefully selected data structures and algorithms in both C++ and Python. The backend is highly optimized and is set up for parallelization. We welcome contributions from the open-source community.
# Install
pip install open3d
# Verify installation
python -c "import open3d as o3d; print(o3d.__version__)"
0.15.2
# Python API
python -c "import open3d as o3d; \
mesh = o3d.geometry.TriangleMesh.create_sphere(); \
mesh.compute_vertex_normals(); \
o3d.visualization.draw(mesh, raw_mode=True)"
# Open3D CLI
open3d example visualization/draw
***************************************************
* Open3D: A Modern Library for 3D Data Processing *
* *
* Version 0.15.2 *
* Docs http://www.open3d.org/docs *
* Code https://github.com/isl-org/Open3D *
***************************************************
-- Mouse view control --
Left button + drag : Rotate.
Ctrl + left button + drag : Translate.
Wheel button + drag : Translate.
Shift + left button + drag : Roll.
Wheel : Zoom in/out.
-- Keyboard view control --
[/] : Increase/decrease field of view.
R : Reset view point.
Ctrl/Cmd + C : Copy current view status into the clipboard.
Ctrl/Cmd + V : Paste view status from clipboard.
-- General control --
Q, Esc : Exit window.
H : Print help message.
P, PrtScn : Take a screen capture.
D : Take a depth capture.
O : Take a capture of current rendering settings.
open3d.io.read_point_cloud(filename, format='auto', remove_nan_points=False, \
remove_infinite_points=False, print_progress=False)
Example:
import open3d as o3d
pcd=o3d.io.read_point_cloud(r"Cloud.pcd")
print(pcd)
filename (str) – 文件路径
format (str,optional,default=‘auto’) – 文件的格式,默认是auto,将影响如何读取文件
remove_nan_points (bool*,* optional*,* default=False) – 是否移除值为nan的点
remove_infinite_points (bool*,* optional*,* default=False) – 是否移除值为inf的点
print_progress (bool*,* optional*,* default=False) – 当该值为True时,将会在可视化时出现一个过程条
open3d.geometry.PointCloud对象
format参数的可选参数为:
格式 | 描述 |
---|---|
xyz | 每一行包含[x,y,z] |
xyzn | 每一行包含[x,y,z,nx,ny,nz] |
xyzrgb | 每一行包括[x,y,z,r,g,b] rgb为[0,1]之间的float类型 |
pts | 第一行表示点数,之后每行包括[x,y,z,i,r,g,b] rgb为unit8类型 |
ply | ply文件 |
pcd | pcd文件 |
读取文本点云文件,通过numpy转换
import numpy as np
import open3d as o3d
# 读取到ndarray
data=np.genfromtxt(r'randy\three.txt',delimiter=",")
# 创建PointCloud类
pcd=o3d.geometry.PointCloud()
pcd.points=o3d.utility.Vector3dVector(data[:,:3])
print(pcd)
print("Load a ply point cloud, print it, and render it") # 加载PLY点云,打印它并显示它
ply_point_cloud = o3d.data.PLYPointCloud() # 获取点云数据,如果下载不成功,可以删除这行代码
pcd = o3d.io.read_point_cloud(ply_point_cloud.path) # ply_point_cloud.path,可以换成自己的点云文件的地址
print(pcd)
print(np.asarray(pcd.points))
o3d.visualization.draw_geometries([pcd],
zoom=0.3412,
front=[0.4257, -0.2125, -0.8795],
lookat=[2.6172, 2.0475, 1.532],
up=[-0.0694, -0.9768, 0.2024])
def draw_point_cloud(pcd):
vis = o3d.visualization.Visualizer()
vis.create_window()
vis.add_geometry(pcd)
render_option = vis.get_render_option()
render_option.point_size = 1
render_option.background_color = np.asarray([0, 0, 0])
vis.run()
vis.destroy_window()
import open3d as o3d
import os
pcds = os.listdir("/home/user/Documents/reconstruction/0715_file/0806_reconstruction/")
# pcds = [i for i in pcds if i.split(".")[-1] == "pcd"]
pcds.sort()
for pcd in pcds:
print(pcd)
source = o3d.io.read_point_cloud("/home/qiancj/pcd" + pcd) # source 为需要配准的点云
vis = o3d.visualization.Visualizer()
vis.create_window()
# 将两个点云放入visualizer
vis.add_geometry(source)
# vis.add_geometry(target)
vis.get_render_option().point_size = 2
# 让visualizer渲染点云
vis.update_geometry()
vis.poll_events()
vis.update_renderer()
vis.run()
draw_geometries(geometry_list, window_name=’Randy’, width=1920,\
height=1080, left=50, top=50, point_show_normal=False,\
mesh_show_wireframe=False, mesh_show_back_face=False,\
lookat, up, front, zoom)
Retun:
None
call function:
o3d.visualization.draw_geometries([pcd])
parameter | 含义 |
---|---|
geometry_list (List[open3d.geometry.Geometry]) | 需要可视化的几何体列表 |
window_name (str, optional, default=‘Open3D’) | 窗口名称 |
width (int, optional, default=1920) | 窗口宽度 |
height (int, optional, default=1080) | 窗口高度 |
left (int, optional, default=50) | 窗口左边界 |
top (int, optional, default=50) | 窗口顶部边界 |
point_show_normal (bool, optional, default=False) | 是否展示法向量 |
mesh_show_wireframe (bool, optional, default=False) | 是否可视化网格线框 |
mesh_show_back_face (bool, optional, default=False) | 同时可视化格网三角形背部 |
lookat (numpy.ndarray[float64[3,1]]) | 相机注视向量 |
up (numpy.ndarray[float64[3,1]]) | 相机的上方向向量 |
front (numpy.ndarray[float64[3,1]]) | 相机的前矢量 |
zoom (float) | 相机缩放倍数 |
Demos:
def custom_draw_geometry_with_key_callback(pcd):
def change_background_to_black(vis):
opt = vis.get_render_option()
opt.background_color = np.asarray([0, 0, 0])
return False
def load_render_option(vis):
vis.get_render_option().load_from_json(
"../../TestData/renderoption.json")
return False
def capture_depth(vis):
depth = vis.capture_depth_float_buffer()
plt.imshow(np.asarray(depth))
plt.show()
return False
def capture_image(vis):
image = vis.capture_screen_float_buffer()
plt.imshow(np.asarray(image))
plt.show()
return False
key_to_callback = {}
key_to_callback[ord("K")] = change_background_to_black
key_to_callback[ord("R")] = load_render_option
key_to_callback[ord(",")] = capture_depth
key_to_callback[ord(".")] = capture_image
draw_geometries_with_key_callbacks([pcd], key_to_callback)
custom_draw_geometry_with_key_callback(point_cloud)
pcd.normals=o3d.utility.Vector3dVector(data[:,3:])
o3d.visualization.draw_geometries([pcd],window_name="o3d",width=1920,height=1080,
left=50,top=50,point_show_normal=True)
# 自动计算法向量
radius=0.01 # 搜索半径
max_nn=25 # 邻域内用于估算法线的最大点数
# 执行KD树搜索
pcd_bin.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius,max_nn))
o3d.visualization.draw_geometries([pcd_bin],window_name="o3d",width=1920,height=1080,
left=50,top=50,point_show_normal=True)
colors = np.ndarray(shape=(npts, 3), dtype=int)
count = 0
for z in data_new[:, 2]:
colors[count] = convert_data8(z)
count = count + 1
pcd_bin.colors = o3d.utility.Vector3dVector(colors/255.0)
o3d.visualization.draw_geometries([pcd_bin], window_name="o3d", width=1920, height=1080,
left=50, top=50, point_show_normal=True)
path=r'\randy'
pcd1=read_txt(path+r"\three_1.txt")
pcd2=read_txt(path+r"\three_2.txt")
o3d.visualization.draw_geometries([pcd1,pcd2],window_name="Sesame",width=1920,height=1080,
left=50,top=50,mesh_show_back_face=True)
def draw_point_clouds_simultaneously(base_fold, is_down_sample = False, arg_voxel_size = 0.2):
if base_fold == "":
print("\033[1;31mBase fold is EMPTY. Please check!\033[0m")
pcds = []
pcds_path = []
pcd_total = o3d.geometry.PointCloud()
files = os.listdir(base_fold)
for f in files:
pcd_path = os.path.join(base_fold + f)
pcds_path.append(pcd_path)
pcd = o3d.io.read_point_cloud(pcd_path)
# 降采样
if is_down_sample:
pcd_down = pcd.voxel_down_sample(voxel_size=arg_voxel_size)
pcds.append(pcd_down)
else:
pcds.append(pcd)
o3d.visualization.draw_geometries(pcds, window_name="Simultaneous display point clouds",
width=1024, height=768,
left=50, top=50,
mesh_show_back_face=False)
open3d.io.write_point_cloud(filename, pointcloud, write_ascii=False, compressed=False, print_progress=False)
Example:
o3d.io.write_point_cloud("02.pcd",pcd2,write_ascii=True)
Return
bool
Parameters | 含义 |
---|---|
filename (str) | 文件路径 |
pointcloud (open3d.geometry.PointCloud) | 点云对象 |
write_ascii (bool,optional,default=False) | 该参数为True时,将会写入ASCII码,否则一般写入二进制文件 |
compressed (bool,optional,default=False) | 是否以压缩格式进行输出 |
print_progress (bool,optional,default=False) | 是否在控制台打印一个进度条 |
def merge_point_clouds(base_fold, save_path):
if base_fold == "":
print("\033[1;31mBase fold is EMPTY. Please check!\033[0m")
if base_fold == "":
print("\033[1;33mBase fold is EMPTY. Set base fold as target fold!\033[0m")
now_time = datetime.datetime.now()
cur_date = datetime.datetime.strptime(now_time, '%Y%m%d')
tar_pcd = "merge_pcd_{}.pcd".format(cur_date)
save_path = os.path.join(base_fold, tar_pcd)
pcds_path = []
files = os.listdir(base_fold)
for f in files:
pcd_path = os.path.join(base_fold + f)
pcds_path.append(pcd_path)
for i in range(len(pcds_path)):
if i == 0:
pcd0 = o3d.io.read_point_cloud(pcds_path[0])
o3d.io.write_point_cloud(save_path, pcd0)
else:
pcd1 = o3d.io.read_point_cloud(save_path)
pcd2 = pcd1 + o3d.io.read_point_cloud(pcds_path[i])
o3d.io.write_point_cloud(save_path, pcd2)
print("save merged point cloud file: ", save_path)
down_sample_pcd = pcd_randy.voxel_down_sample(voxel_size=0.05)
o3d.visualization.draw_geometries([down_sample_pcd])
print("The number of point cloud is : ",pcd_randy)
print("The number of down_sample_PC is : ",down_sample_pcd)
点云正态估计通过指定算法参数估测每个点可能的法向量,estimate_normals查找指定搜索半径内的临近点,通过这些临近点的协方差计算其主轴,从而估计法向量。正常情况下会产生两个方向相反的法向量,在不知道几何体的全局结构下,两者都可以是正确的。Open3D会尝试调整法线的方向,使其与原始法线对齐。
down_sample_pcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
o3d.visualization.draw_geometries([down_sample_pcd],
zoom=0.3488,
front=[0.4288, -0.2188, -0.8788],
lookat=[2.6188, 2.0488, 1.588],
up=[-0.0688, -0.9788, 0.2088],
point_show_normal=True)
# 访问顶点法线
print("Print a normal vector of the 8th point")
print(down_sample_pcd.normals[8])
print("Print the normal vectors of the first 8 points")
print(np.asarray(down_sample_pcd.normals)[:8, :])
Open3D的点云裁剪需要通过read_selection_polygon_volume
读取多边形选择区域的json
文件,接着通过.crop_point_cloud()
方法过滤出点。
print("Load a polygon volume and use it to crop the original point cloud")
demo_crop_data = o3d.data.DemoCropPointCloud()
pcd = o3d.io.read_point_cloud(demo_crop_data.point_cloud_path)
vol = o3d.visualization.read_selection_polygon_volume(demo_crop_data.cropped_json_path)
chair = vol.crop_point_cloud(pcd)
o3d.visualization.draw_geometries([chair],
zoom=0.7,
front=[0.4288, -0.2188, -0.8330],
lookat=[2.6188, 2.0488, 1.588],
up=[-0.0699, -0.9799, 0.2099])
paint_uniform_color
可以将点云颜色绘制成同一的色彩。注意颜色是在[0,1]
之间的float
类型。
print("Paint desk")
chair.paint_uniform_color([0.8, 0.806, 0])
o3d.visualization.draw_geometries([desk],
zoom=0.8,
front=[0.5434, -0.2388, -0.8888],
lookat=[2.4688, 2.1388, 1.388],
up=[-0.1788, -0.9788, 0.1688])
###
Open3D
中,可以通过点云索引来进行筛选。select_by_index
也可以通过修改invert
方法进行反向选取。
inner=pcd_randy.select_by_index([i for i in range(len(pcd_randy.points)) if i%2==0])
outer=pcd_randy.select_by_index([i for i in range(10)],invert=True)
o3d.visualization.draw_geometries([pcd_randy])
o3d.visualization.draw_geometries([inner])
o3d.visualization.draw_geometries([outer])
Open3D
提供了compute_point_cloud_distance
方法,能够计算源点云到目标点云的最近距离,该方法也能用于计算两点云之间的切角距离。
demo_crop_data = o3d.data.DemoCropPointCloud()
pcd = o3d.io.read_point_cloud(demo_crop_data.point_cloud_path)
vol = o3d.visualization.read_selection_polygon_volume(demo_crop_data.cropped_json_path)
chair = vol.crop_point_cloud(pcd)
#从原始图像到裁剪图像中最近点的距离
dists=pcd.compute_point_cloud_distance(chair)
dists=np.asarray(dists)
index=np.where(dists>0.1)[0]
pcd_without_chair = pcd.select_by_index(index)
o3d.visualization.draw_geometries([pcd_without_chair],
zoom=0.3412,
front=[0.5434, -0.2388, -0.8888],
lookat=[2.4688, 2.1388, 1.388],
up=[-0.1788, -0.9788, 0.1688])
与其几何类型相似,PointCloud也具有边界体积。
aabb = chair.get_axis_aligned_bounding_box()
aabb.color = (1, 0, 0)
obb = chair.get_oriented_bounding_box()
obb.color = (0, 1, 0)
o3d.visualization.draw_geometries([chair, aabb, obb],
zoom=0.7,
front=[0.5434, -0.2388, -0.8888],
lookat=[2.4688, 2.1388, 1.388],
up=[-0.1788, -0.9788, 0.1688])
点云凸包是包含所有点的最小凸集,在Open3D
中,可采用compute_convex_hull
计算。
bunny = o3d.data.BunnyMesh()
mesh = o3d.io.read_triangle_mesh(bunny.path)
mesh.compute_vertex_normals()
pcl = mesh.sample_points_poisson_disk(number_of_points=2000)
hull, _ = pcl.compute_convex_hull()
hull_ls = o3d.geometry.LineSet.create_from_triangle_mesh(hull)
hull_ls.paint_uniform_color((1, 0, 0))
o3d.visualization.draw_geometries([pcl, hull_ls])
DBSCAN
是Ester
在1996年提出的一种聚类算法,Open3D
中也提供了该算法的APIpc.cluster_dbscan(eps,min_points,print_progress)
,eps
定义了簇的半径距离,而min_points
定义形成簇的最小点数量。返回是一个标签对象,若值为-1
则表示噪声。
import matplotlib.pyplot as plt
ply_point_cloud = o3d.data.PLYPointCloud()
pcd = o3d.io.read_point_cloud(ply_point_cloud.path)
with o3d.utility.VerbosityContextManager(
o3d.utility.VerbosityLevel.Debug) as cm:
labels = np.array(
pcd.cluster_dbscan(eps=0.02, min_points=10, print_progress=True))
max_label = labels.max()
print(f"point cloud has {max_label + 1} clusters")
colors = plt.get_cmap("DaTou")(labels / (max_label if max_label > 0 else 1))
colors[labels < 0] = 0
pcd.colors = o3d.utility.Vector3dVector(colors[:, :3])
o3d.visualization.draw_geometries([pcd],
zoom=0.453,
front=[-0.4999, -0.1633, -0.8499],
lookat=[2.1833, 2.0633, 2.0999],
up=[0.1233, -0.9833, 0.1
Open3
D支持使用
RANSAC方法从点云中分割几何基元(
geometric primitives)。通过
segment_plane方法,可以找到点云中的最大支持平面(
the plane with the largest support`)。该方法提供了三个参数:
distance_threshold
:定义了一个点可被视为内嵌点的估计平面的最大距离ransac_n
:定义用来估计平面的随机抽样点数量num_iterations
:定义了随机平面抽样和验证的频率当我们从给定视角渲染点云时,由于前方没有遮挡,可能会有背面的点渗入到前景中。Katz
提出了一种消隐算法(Hidden point removal
),可以从给定的视图中近似地获得点云的可见性,而无需表面重建或正常的估计。
print("Convert mesh to a point cloud and estimate dimensions")
armadillo = o3d.data.ArmadilloMesh()
mesh = o3d.io.read_triangle_mesh(armadillo.path)
mesh.compute_vertex_normals()
pcd = mesh.sample_points_poisson_disk(5000)
diameter = np.linalg.norm(
np.asarray(pcd.get_max_bound()) - np.asarray(pcd.get_min_bound()))
o3d.visualization.draw_geometries([pcd])
print("Define parameters used for hidden_point_removal")
camera = [0, 0, diameter]
radius = diameter * 100
print("Get all points that are visible from given view point")
_, pt_map = pcd.hidden_point_removal(camera, radius)
print("Visualize result")
pcd = pcd.select_by_index(pt_map)
o3d.visualization.draw_geometries([pcd])
Open3D 官网
http://www.open3d.org/docs/release/index.html
Open3D点云处理
https://blog.csdn.net/qq_45957458/article/details/124282087
Python: 用open3D库,连续多帧显示点云(查看localization pose的好坏)
https://blog.csdn.net/melally/article/details/126116894
使用open3d可视化
https://blog.csdn.net/suyunzzz/article/details/105183824#t4)
Open3D之键盘切换上下帧显示点云
https://zhuanlan.zhihu.com/p/539697926
点云可视化工具open3d的使用
https://blog.csdn.net/mingshili/article/details/124714290