象棋人工智能的实现

为了实现人机对战功能,必须实现象棋的人工智能,将象棋的每个棋子都赋予一定的权重,每走一步都计算分值,选择得分最高的一步,这是象棋人工智能的基本思想。

    #ifndef AI_H
    #define AI_H
    #include "cocos2d.h"
    USING_NS_CC;
    class SceneGame;

    class Step : public CCObject
    {
    public:
        int _moveid;
        int _killid;
        int _xFrom;
        int _yFrom;
        int _xTo;
        int _yTo;
        static Step* create(int moveid, int killid, int xFrom, int yFrom, int xTo, int yTo)
        {
            Step* step = new Step;
            step->_killid = killid;
            step->_moveid = moveid;
            step->_xFrom = xFrom;
            step->_xTo = xTo;
            step->_yFrom = yFrom;
            step->_yTo = yTo;
            step->autorelease();
            return step;
        }
    };
    class AI
    {
    public:
        AI(SceneGame *game);

        SceneGame *_game;
        Step *GenOneMove(int level=2);
        int getScore();

        static int _score[7];
        CCArray *getAllPossibleMove();
        void getAllPossibleMove(int idx,CCArray *arr);

        int getMinValue(int level,int maxScore);
        int getMaxValue(int level,int minScore);
        Step *_step;
    };

    #endif // AI_H

得分表

int AI::_score[7]=
{
    1000,
    10,
    10,
    100,
    50,
    50,
    20
};

创建一步

Step *AI::GenOneMove(int level)
{

    int maxScore=-10000;
    Step *ret;
    //find all possible access an calcute the hights score
    CCArray *possibleMOve=getAllPossibleMove();
    CCObject *obj;
    CCARRAY_FOREACH(possibleMOve,obj)
    {
        Step *step=(Step*)obj;
        _game->fakeMove(step);
        int score=getMinValue(level-1,maxScore);
        //int score=getScore();
        _game->unfakeMove(step);
        if(score>maxScore)
        {
            maxScore=score;
            ret=step;
        }
    }

    return ret;

}

最大值最小值算法

int AI::getMinValue(int level,int maxScore)
{
    if(level ==0)
    {
        return getScore();
    }
    int minScore=10000;
    CCArray *possibleMOve=getAllPossibleMove();
    CCObject *obj;
    CCARRAY_FOREACH(possibleMOve,obj)
    {
        Step *step=(Step*)obj;
        _game->fakeMove(step);
        int score=getMaxValue(level-1,minScore);
         _game->unfakeMove(step);
        if(score<=maxScore)
        {
            minScore=score;
            return minScore;
        }


        if(scorereturn minScore;
}
int AI::getMaxValue(int level,int minScore)
{
    if(level ==0)
    {
        return getScore();
    }
    int maxScore=-10000;
    CCArray *possibleMOve=getAllPossibleMove();
    CCObject *obj;
    CCARRAY_FOREACH(possibleMOve,obj)
    {
        Step *step=(Step*)obj;
        _game->fakeMove(step);
        int score=getMinValue(level-1,maxScore);
         _game->unfakeMove(step);
        if(score>=minScore)
        {
            maxScore=score;
            break;
        }

        if(score>maxScore)
        {
            maxScore=score;

        }

    }

    return maxScore;
}

值得注意的是,象棋预先考虑的步骤越多,象棋越智能,但是当象棋考虑到第4步的时候,ubuntu就崩溃了,可以采用智能减枝算法,有效减少计算量。注意,当使用智能减枝时,一定要将假动作回移,不然会引起递归混乱。

你可能感兴趣的:(cocos2dx,人工智能)