深度学习_加法&乘法层的实现

参考书:深度学习入门:基于Python的理论与实现
在深度学习中有一种高效计算权重参数梯度的方法----误差反向传播法
可以通过画计算图,来帮助理解误差反向传播法。计算图的乘法节点称为乘法层,加法节点称为加法层。实现代码如下:

class MulLayer:     # 乘法类
    def __init__(self):
        self.x = None
        self.y = None

    def forward(self, x, y):        # 向前传递
        self.x = x
        self.y = y
        out = x * y

        return out

    def backward(self, dout):       # 向后传递,dout为上游传来的导数
        dx = dout * self.y      # 翻转x和y
        dy = dout * self.x

        return dx, dy


class AddLayer:     # 加法类
    def __init__(self):
        pass

    def forward(self, x, y):        # 向前传递
        out = x + y
        return out

    def backward(self, dout):       # 向后传递,dout为上游传来的倒数
        dx = dout * 1
        dy = dout * 1
        return dx, dy


#########################################################################
# if __name__ == "__main__":      # 乘法测试
#     apple = 100
#     apple_num = 2
#     tax = 1.1
#
#     # layer,两个乘法操作
#     mul_apple_layer = MulLayer()
#     mul_tax_layer = MulLayer()
#
#     # forward
#     apple_price = mul_apple_layer.forward(apple, apple_num)
#     price = mul_tax_layer.forward(apple_price, tax)
#     print(price)
#
#     # backward
#     dprice = 1
#     dapple_price, dtax = mul_tax_layer.backward(dprice)
#     dapple, dapple_num = mul_apple_layer.backward(dapple_price)
#     print(dapple, dapple_num, dtax)

#########################################################################
if __name__ == "__main__":      # 乘法和加法测试
    apple = 100
    apple_num = 2
    orange = 150
    orange_num = 3
    tax = 1.1

    # 要进行的乘法,加法操作
    mul_apple_layer = MulLayer()
    mul_orange_layer = MulLayer()
    add_apple_orange_layer = AddLayer()
    mul_tax_layer = MulLayer()

    # forward
    apple_price = mul_apple_layer.forward(apple, apple_num)
    orange_price = mul_orange_layer.forward(orange, orange_num)
    apple_orange_price = add_apple_orange_layer.forward(apple_price, orange_price)
    price = mul_tax_layer.forward(apple_orange_price, tax)

    # backward
    dprice = 1
    dall_price, dtax = mul_tax_layer.backward(dprice)
    dapple_price, dorange_price = add_apple_orange_layer.backward(dall_price)
    dapple, dapple_num = mul_apple_layer.backward(dapple_price)
    dorange, dorange_num = mul_orange_layer.backward(dorange_price)

    # 输出
    print(price)
    print(dapple_num, dapple, dorange_num, dorange, dtax)

乘法测试,示例图:
深度学习_加法&乘法层的实现_第1张图片
乘法和加法测试,示例图:
深度学习_加法&乘法层的实现_第2张图片

你可能感兴趣的:(深度学习,深度学习,加法层,乘法层)