- 基于人工智能的智能视频内容分析系统
小彭律师
python
基于人工智能的智能视频内容分析系统系统功能1.视频数据预处理降噪与滤波:去除视频画面中的噪点和干扰画质增强:调整亮度、对比度和色彩平衡关键帧提取:减少数据量,提取关键信息2.目标识别检测基于深度学习模型(YOLO、FasterR-CNN等)识别多种目标类型(人、车辆、物品等)适应不同光照、角度和遮挡情况输出目标位置、类别和置信度3.行为分析研判基于时序模型(LSTM、3D-CNN等)分析目标动作规
- AGI的学习与适应能力
AGI大模型与大数据研究院
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
“AGI的学习与适应能力”1.背景介绍1.1人工通用智能(AGI)的定义人工通用智能(ArtificialGeneralIntelligence,AGI)是指能够像人类一样具有广泛的理解和学习能力、可以完成多种复杂任务的人工智能系统。与狭义人工智能(NarrowAI)专注于特定领域和特定任务不同,AGI旨在模拟人类整体认知能力,包括感知、推理、学习、计划、创造力和自我意识等。1.2AGI的重要性和
- 【Python机器学习】2.2. 聚类分析算法理论:K均值聚类(KMeans Analysis)、KNN(K近邻分类)、均值漂移聚类(MeanShift)
SomeB1oody
Python机器学习机器学习算法python聚类分类算法
喜欢的话别忘了点赞、收藏加关注哦(关注即可查看全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(=・ω・=)2.2.1.K均值聚类(KMeansAnalysis)K均值算法是以空间中K个点为中心进行聚类,对最靠近他们的对象归类,是聚类算法中最为基础但也最为重要的算法。数学原理计算数据点与各簇中心点的距离:dist(xi,ujt){dist}(x_i,u_j^t)dist(xi,ujt)然后根据
- Deepseek 使用攻略
隔窗听雨眠
人工智能
人工智能飞速发展的时代,新的技术和工具不断涌现,Deepseek便是其中备受瞩目的存在。它以强大的功能和出色的表现,吸引了众多用户的关注。今天,就让我们一起来深入了解一下Deepseek究竟是什么,以及如何使用它。一、什么是DeepseekDeepseek(深度求索)是一家位于杭州的人工智能公司,同时也是一系列大语言模型的统称。它由中国对冲基金高毅资产创立并提供支持,其模型均以开源形式发布。Dee
- FastDVDnet:基于深度学习的视频去噪框架
陆可鹃Joey
FastDVDnet:基于深度学习的视频去噪框架项目地址:https://gitcode.com/gh_mirrors/fa/fastdvdnet项目介绍FastDVDnet是一个高效、开源的深度学习模型,专注于视频去噪。该项目由MatteoTassano开发并维护,旨在提供一种快速且有效的解决方案,以消除视频中的噪声,同时保持图像细节和自然纹理。它利用了时间域的连续性和深层神经网络的力量,确保在
- 手撕multi-head self attention 代码
心若成风、
自然语言处理语言模型transformer
在深度学习和自然语言处理领域,多头自注意力(Multi-HeadSelf-Attention)机制是Transformer模型中的核心组件之一。它允许模型在处理序列数据时,能够同时关注序列中的不同位置,从而捕获到丰富的上下文信息。下面,我们将详细解析多头自注意力机制的实现代码。一、概述多头自注意力机制的核心思想是将输入序列进行多次线性变换,然后分别计算自注意力得分,最后将所有头的输出进行拼接,并通
- 深度学习 Deep Learning 第2章 线性代数
odoo中国
AI编程人工智能深度学习线性代数人工智能
深度学习第2章线性代数线性代数是深度学习的语言。张量操作是神经网络计算的基石,矩阵乘法是前向传播的核心,范数约束模型复杂度,而生成空间理论揭示模型表达能力的本质。本章介绍线性代数的基本内容,为进一步学习深度学习做准备。主要内容2.1标量、向量、矩阵和张量标量:单个数字,用斜体表示,通常赋予小写字母变量名。向量:数字数组,按顺序排列,用粗体小写字母表示,元素通过下标访问。矩阵:二维数字数组,用粗体大
- 【prompt实战】知乎问题解答专家
姚瑞南
prompt实战应用案例prompt
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)#Role:知乎问题解答分类专家##Profile:你是一个知乎问题解答分类专家,主要帮助用户解答各类领域专业问题,包括但不限于金融领域、职场问题、互联网领域、科技领域、人工智能领域
- MATLAB算法实战应用案例精讲-【深度学习】归一化
林聪木
matlab算法深度学习
目录为什么要做特征归一化/标准化?常用featurescaling方法计算方式上对比分析featurescaling需要还是不需要什么时候需要featurescaling?什么时候不需要FeatureScaling?归一化基础知识点1.什么是归一化2.为什么要归一化3.为什么归一化能提高求解最优解的速度4.归一化有哪些类型5.不同归一化的使用条件6.归一化和标准化的联系与区别层归一化综述提出背景概
- DeepSeek:全栈开发者视角下的AI革命者
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3人工智能
DeepSeek:全栈开发者视角下的AI革命者写在前面随着人工智能(AI)技术的不断进步,AI已经成为各行各业创新的核心动力。从自动驾驶到智能制造,再到自然语言处理和图像识别,AI正在逐渐渗透并改变着我们的生活和工作方式。DeepSeek,作为AI领域的新兴技术,凭借其独特的技术架构和颠覆性的创新理念,成为了全栈开发者关注的焦点。本文将从全栈开发者的角度出发,详细解析DeepSeek的诞生、技术架
- Assembly语言的自然语言处理
花韵婷
包罗万象golang开发语言后端
Assembly语言在自然语言处理中的应用引言自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能的一个重要分支,致力于实现计算机与人类语言之间的互动。随着计算能力的提升以及大数据的蓬勃发展,NLP在各个领域的应用如火如荼。从语音识别、机器翻译到情感分析等,NLP正在改变我们与信息之间的互动方式。不过,当前主流的NLP研究通常是用高级编程语言(如Python、Ja
- Julia语言的学习路线
樟松
包罗万象golang开发语言后端
Julia语言学习路线指南引言在编程语言层出不穷的今天,Julia作为一门新兴的高级编程语言,以其出色的性能和易用性逐渐获得了越来越多的关注。特别是在科学计算、数据分析和机器学习等领域,Julia的表现十分出色,成为研究人员和开发者的热门选择。本文将为希望学习Julia语言的读者提供一条详细的学习路线,包括基础知识、工具、库、项目和实践经验等,帮助大家有效地掌握这门语言。一、了解Julia语言在开
- 大语言模型原理与工程实践:大语言模型强化对齐
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:大语言模型强化对齐作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的迅猛发展,大语言模型(LargeLanguageModels,LLMs)如GPT-3、LaMDA等,在自然语言处理(NLP)领域取得了显著的突破。这些模型在问答、翻译、文本生成等方面展现出惊人的能力,但同时也引发了
- 【机器学习】基于t-SNE数据可视化工程
无水先生
AI原理和python实现人工智能综合人工智能算法
一、说明t-SNE(t-DistributedStochasticNeighborEmbedding)是一种常用的非线性降维技术。它可以将高维数据映射到一个低维空间(通常是2D或3D)来便于可视化。Scikit-learnAPI提供TSNE类,以使用T-SNE方法可视化数据。在本教程中,我们将简要学习如何在Python中使用TSNE拟合和可视化数据。二、t-SNE是个什么?2.1什么是t-SNE?
- 从图形处理到通用计算的进化之路
绿算技术
GPU架构介绍科技gpu算力
图形处理单元,作为现代计算机中不可或缺的一部分,已经从最初的图形渲染专用处理器,发展成为强大的并行计算引擎,广泛应用于人工智能、科学计算、游戏娱乐等领域。本文将深入探讨GPU架构的演变历程、核心组件以及其在不同应用场景中的优势。GPU架构的演变:从固定功能到可编程流水线早期的GPU采用固定功能流水线架构,专为图形渲染任务而设计。这种架构将图形渲染流程划分为一系列固定的阶段,例如顶点处理、光栅化、纹
- 数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践
kkchenkx
数据挖掘信息可视化算法聚类均值算法数据挖掘机器学习
数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践数据降维简介降维技术的重要性在数据科学和机器学习领域,数据降维是一种关键的技术,用于减少数据集的维度,同时保留数据的结构和重要信息。降维不仅可以帮助我们更有效地存储和处理数据,还能在高维数据中发现潜在的模式和结构,这对于数据可视化和模型训练尤为重要。高维数据往往难以直观理解,通过降维,我们可以将其转换为二维或三维空间,便于可视化
- 高效快速教你deepseek如何进行本地部署并且可视化对话
chatgpt
随着最近一个新的人工智能deepseek的爆火,很多大佬都开始了在本地进行deepseek的部署操作,并且离线也可以使用,这里的话我就一步一步带你们部署本地的deepseek,说实话这个人工智能的实力不亚于openai的gpt安装ollama我们需要先安装ollama,安装地址ollama,我们直接点击下载,我们在下载的时候尽量使用我们的谷歌浏览器,有魔法的最好带上魔法,不然安装的时候可能会出问题
- useblackbox黑箱AI编码助理
百态老人
python开发语言
黑箱AI是一个人工智能的编码助理可以让代码快10倍。它使您能够把任何问题变成代码和功能,如从任何视频提取代码和代码自动完成。它有以下几个特点:可以从视频、图片、PDF等格式中复制代码。可以将任何问题转换成代码。可以快速找到任何代码片段,并开始编码。支持20多种编程语言的代码自动补全。有Chrome扩展和VSCode扩展。这个网站有不同的收费方案,根据你需要的功能和使用量而定。它有以下几种选择:好开
- 大模型火爆 2025:LLaMA、Qwen、DeepSeek 核心原理+就业秘籍,快速入门 AI 工程师
weixin_40941102
llama人工智能
1.大模型核心原理:从零开始理解AI模型这些是大型语言模型(LLMs)的核心技术,适合初学者逐步深入学习。以下是详细拆解,让小白也能掌握:LLaMA系列模型核心原理详解:什么是LLaMA?:LLaMA是一个基于人工智能的语言模型,像一个超级聪明的聊天机器人,能理解和生成人类语言。它由Meta公司开发,类似ChatGPT,但更开源、灵活。核心原理:Transformer架构:想象一个工厂流水线,LL
- 【AI热点】MCP协议深度洞察报告
碣石潇湘无限路
人工智能php开发语言
摘要人工智能技术飞速发展,大型语言模型(LLM)如何高效、安全地利用外部数据和工具成为关键问题。模型上下文协议(ModelContextProtocol,简称MCP)是一种由Anthropic于2024年底提出的开放标准协议。它通过统一的客户端-服务器架构,为AI应用与文件系统、数据库、第三方API等外部资源之间提供标准化、安全的双向通信接口。本文将深入解析MCP协议的基本概念和背景、架构设计(通
- 必看!一文读懂知识蒸馏技术
小天才学习机打游戏
人工智能知识图谱神经网络langchainwindows
导读最近,DeepSeek的爆火让大家对人工智能领域的技术发展又有了新的关注。而知识蒸馏作为深度学习中一项重要的技术,也在背后默默地发挥着作用,今天就来给大家详细介绍一下知识蒸馏及其相关原理。1.知识蒸馏是什么在深度学习领域,大型模型(如DeepSeek)通常具有强大的性能,但它们的计算量和参数量都非常庞大,这使得它们难以在资源受限的设备(如移动设备或嵌入式设备)上部署。例如,GPT-3在570G
- 从零开始大模型开发与微调:PyTorch 2.0深度学习环境搭建
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyTorch2.0深度学习环境搭建作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习在各个领域的广泛应用,大模型开发与微调成为了当前研究的热点。大模型能够学习到丰富的知识,并在各个下游任务上取得优异的性能。然而,大模型开发与微调需要强大的计算资源和专业的知识背景,这对于许多初学者和研究
- AI大模型学习路线及相关资源推荐
python游乐园
学习资源学习PythonAIAI编程人工智能
哈喽,大家好!本文为大家带来AI大模型学习路线及相关资源推荐,这对于学习掌握AI大模型很有帮助呦,希望大家多多点赞收藏~感谢~~1AI大模型的基础信息1.1什么是AI大模型AI大模型,即人工智能大型模型,是一种基于深度学习技术,具有海量参数、强大算力支持、能够处理和生成复杂数据的人工智能模型。1.2AI大模型的主要特点规模庞大:AI大模型通常包含海量的参数。例如,谷歌的BERT模型在最初发布时就有
- 数据分布偏移检测:保障模型在生产环境中的稳定性
trust Tomorrow
机器学习python机器学习人工智能深度学习
数据分布偏移检测:保障模型在生产环境中的稳定性引言在机器学习系统从开发环境部署到生产环境的过程中,数据分布偏移问题是影响模型性能的主要挑战之一。当训练数据与生产环境中的数据分布不一致时,即使是经过精心调优的模型也可能表现出明显的性能下降。本文将深入探讨数据分布偏移的检测方法,并提供一套系统化的解决方案,帮助读者构建更加稳健的机器学习系统。1.数据分布偏移问题概述1.1分布偏移的类型数据分布偏移主要
- 模型蒸馏:从复杂到精简,AI技术的“瘦身”秘籍
lmtealily
人工智能
引言在人工智能的浪潮中,大型模型如BERT、GPT系列等在自然语言处理(NLP)、计算机视觉(CV)等领域取得了显著的成果。然而,这些“庞然大物”通常拥有数十亿甚至数千亿个参数,计算和存储成本极高,难以部署到资源受限的设备上。为了解决这一问题,模型蒸馏技术应运而生。模型蒸馏是一种将大型复杂模型的知识迁移到小型简单模型的技术,旨在保持高性能的同时大幅减少模型的参数量和计算复杂度。本文将带你深入了解模
- 【深度学习与大模型基础】第3章-张量
lynn-66
深度学习与大模型基础深度学习人工智能
大家好!今天我们来聊聊张量(Tensor)。别被这个词吓到,其实它没那么复杂。什么是张量?简单来说,张量就是一个多维数组。你可以把它看作是一个装数据的容器,数据的维度可以是一维、二维,甚至更高。标量(0维张量):就是一个单独的数字,比如3。向量(1维张量):一串数字,比如[1,2,3]。矩阵(2维张量):一个表格,比如[[1,2],[3,4]]。更高维张量:比如[[[1,2],[3,4]],[[5
- 基于热力梯度的线圈设计用来更替新型的储能方式
热爱电气
数学建模
摘要研究背景:传统电磁储能技术受限于较低的能量密度(约1-5Wh/kg)和充放电速度。热力梯度储能技术通过调控温度场实现多模式能量转换,其潜力能量密度可达100Wh/kg以上。创新点:1.提出三层异质线圈结构(铜基主储层+Bi₂Te₃热电转换层+GdFeO₃磁热调谐层),实现温度梯度与磁场的协同调控。2.开发动态热-电-磁耦合模型,结合有限元分析(COMSOL)与机器学习算法(遗传算法优化参数)。
- AI人工智能对前端的冲击?
理想不理想v
人工智能前端
AI人工智能对前端开发的冲击主要体现在以下几个方面:代码生成与自动化:AI工具如GPT-4和GitHubCopilot能够自动生成高质量的前端代码,从简单的组件到复杂的应用程序,这不仅提高了开发效率,还降低了人为错误的可能性。自动化代码生成工具可以显著减少开发者编写重复性代码的时间,使他们能够专注于创新和解决复杂问题。跨平台开发支持:AI可以帮助生成适用于不同平台的代码,简化跨平台开
- 从人工智能窥见网络安全的重要性
He_Donglin
人工智能web安全网络
“人工智能”一词在上世纪五十年代被提出,在当时,计算机正处于萌芽阶段,同时期的人类第一台电子计算机“ENIAC”诞生了,但是埃尼亚克有很多缺点:庞大的占地面积、庞大的质量、单一的功能、较小的内存等,这主要受制于其他领域的发展,但当时的人们对计算机寄予厚望,希望在未来某一天它能够拥有足够强大的“power”,帮助人们解决诸多问题。于是乎,经过无数科学家数十年来的努力,计算机“长大了”,它的功能不再单
- 《今日AI-人工智能-编程日报》-源自2025年2月28日
小亦编辑部
每日AI-人工智能-编程日报人工智能
技术突破OpenAI发布GPT-4.5:OpenAI正式推出新一代大模型GPT-4.5,语言理解、情商及逻辑推理能力显著增强,幻觉问题大幅减少,计算效率较GPT-4提升超10倍,已逐步向用户开放试用。国产模型Kimi发布k1.6版本:国产模型Kimi发布的k1.6版本,在编程任务评测中超越GPTo3-mini,首次登顶榜首。其“快思考”架构使响应速度提升至秒级,部署成本下降40%。企业动态贵州广电
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><