detectron2 训练labelme标定的coco数据集

labelme是一个很好用的实例分割标定工具,detectron2可以很方便的进行mask rcnn等网络的训练,detectron2可以直接接受coco格式数据集进行输入。

流程:

(1)lableme进行数据的标注,获得json文件;

(2)通过labelme2coco.py文件把标注的数据集转换成coco格式;

(3)使用detectron2进行训练和测试。

需要注意的是labelme转coco给的例子里面是把_background_作为第0类的,而detectron2的输入的标准coco数据集格式类别编号是从1开始的。也就是说如果使用labelme官方给的labelme2coco工具,那么在设置类别个数的时候,实际标注为n类,则类别数应加上背景,写为n+1。

如果不想类别数加1可以通过修改代码实现:

修改前:

detectron2 训练labelme标定的coco数据集_第1张图片

detectron2 训练labelme标定的coco数据集_第2张图片

修改后:

detectron2 训练labelme标定的coco数据集_第3张图片 

 

 

训练:

# Detectron2 maskRCNN训练自己的数据集 https://www.jianshu.com/p/0e00400fdaa5

import torch, torchvision
print(torch.__version__, torch.cuda.is_available())


# Some basic setup:
# Setup detectron2 logger
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()

# import some common libraries
import numpy as np
import os, json, cv2, random
#from google.colab.patches import cv2_imshow

# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog

from detectron2.data.datasets import register_coco_instances
# register_coco_instances("bondOnlyDataset_train", {},
#                         r'/home/whq/git_rep/labelme/examples/instance_segmentation/data_dataset_coco/annotations.json', 
#                         r'/home/whq/git_rep/labelme/examples/instance_segmentation/data_dataset_coco/')
# register_coco_instances("bondOnlyDataset_val", {}, 
#                         r'/home/whq/git_rep/labelme/examples/instance_segmentation/data_dataset_coco/annotations.json', 
#                         r'/home/whq/git_rep/labelme/examples/instance_segmentation/data_dataset_coco/')

register_coco_instances("bondOnlyDataset_train", {},
                        r'~/datasets/data_dataset_coco/annotations.json', 
                        r'~/datasets/data_dataset_coco/')
register_coco_instances("bondOnlyDataset_val", {}, 
                        r'~/datasets/data_dataset_coco/annotations.json', 
                        r'~/datasets/data_dataset_coco/')

my_bond_metadata = MetadataCatalog.get("bondOnlyDataset_train")
print(my_bond_metadata)
# MetadataCatalog.get("bondOnlyDataset_train").thing_classes = ["face_main"]
# print(my_bond_metadata)


# train

from detectron2.engine import DefaultTrainer

cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.DATASETS.TRAIN = ("bondOnlyDataset_train")
cfg.DATASETS.TEST = ()
cfg.DATALOADER.NUM_WORKERS = 2
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")  # Let training initialize from model zoo
cfg.SOLVER.IMS_PER_BATCH = 2
cfg.SOLVER.BASE_LR = 0.00025  # pick a good LR
cfg.SOLVER.MAX_ITER = 300    # 300 iterations 
cfg.SOLVER.STEPS = []        # do not decay learning rate
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128   # faster, and good enough for this toy dataset (default: 512)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2  #the number of classes

os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = DefaultTrainer(cfg) 
trainer.resume_or_load(resume=False)
trainer.train()


# Inference should use the config with parameters that are used in training
# cfg now already contains everything we've set previously. We changed it a little bit for inference:
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")  # path to the model we just trained
# cfg.MODEL.WEIGHTS = os.path.join(r'/home/whq/.torch/iopath_cache/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl')  # path to the model we just trained
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.3   # set a custom testing threshold
predictor = DefaultPredictor(cfg)


from detectron2.utils.visualizer import ColorMode

img_path = r'~/datasets/data_dataset_coco/JPEGImages/10_color_1.jpg'
# img_path = r'/home/whq/git_rep/labelme/examples/instance_segmentation/data_dataset_coco/JPEGImages/2011_000003.jpg'

im = cv2.imread(img_path)
outputs = predictor(im)  # format is documented at https://detectron2.readthedocs.io/tutorials/models.html#model-output-format
print(outputs)

import matplotlib.pyplot as plt

def cv2_imshow(im):
    im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
    plt.figure(), plt.imshow(im), plt.axis('off');

v = Visualizer(im[:, :, ::-1],
               metadata=my_bond_metadata,
               scale=1, 
               instance_mode=2   # remove the colors of unsegmented pixels. This option is only available for segmentation models
               )
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2_imshow(out.get_image()[:, :, ::-1])

#  
plt.show()

# cv2.namedWindow("image",0)
cv2.imshow("image",out.get_image()[:, :, ::-1])
cv2.waitKey(1000) # 需要加显示时间,否则可能会报错
# cv2.destroyWindow("image")

测试:

# Detectron2 maskRCNN训练自己的数据集 https://www.jianshu.com/p/0e00400fdaa5

import torch, torchvision
print(torch.__version__, torch.cuda.is_available())

# Some basic setup:
# Setup detectron2 logger
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()

# import some common libraries
import numpy as np
import os, json, cv2, random
#from google.colab.patches import cv2_imshow

# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog


from detectron2.data.datasets import register_coco_instances
register_coco_instances("bondOnlyDataset_train", {},
                        r'~datasets/data_dataset_coco/annotations.json', 
                        r'~/datasets/data_dataset_coco/')
register_coco_instances("bondOnlyDataset_val", {}, 
                        r'~/datasets/data_dataset_coco/annotations.json', 
                        r'~/datasets/data_dataset_coco/')

my_bond_metadata = MetadataCatalog.get("bondOnlyDataset_train")
print(my_bond_metadata)

from detectron2.engine import DefaultTrainer

cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.DATASETS.TRAIN = ("bondOnlyDataset_train")
cfg.DATASETS.TEST = ()
cfg.DATALOADER.NUM_WORKERS = 2
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")  # Let training initialize from model zoo
cfg.SOLVER.IMS_PER_BATCH = 2
cfg.SOLVER.BASE_LR = 0.00025  # pick a good LR
cfg.SOLVER.MAX_ITER = 300    # 300 iterations 
cfg.SOLVER.STEPS = []        # do not decay learning rate
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128   # faster, and good enough for this toy dataset (default: 512)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2  #the number of classes

# os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
# trainer = DefaultTrainer(cfg) 
# trainer.resume_or_load(resume=False)
# trainer.train()



# Inference should use the config with parameters that are used in training
# cfg now already contains everything we've set previously. We changed it a little bit for inference:
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")  # path to the model we just trained
# cfg.MODEL.WEIGHTS = os.path.join(r'/home/whq/.torch/iopath_cache/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl')  # path to the model we just trained
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.3   # set a custom testing threshold
predictor = DefaultPredictor(cfg)


from detectron2.utils.visualizer import ColorMode

img_path = r'~/datasets/data_dataset_coco/JPEGImages/10_color_1.jpg'
# img_path = r'/home/whq/git_rep/labelme/examples/instance_segmentation/data_dataset_coco/JPEGImages/2011_000003.jpg'

im = cv2.imread(img_path)
outputs = predictor(im)  # format is documented at https://detectron2.readthedocs.io/tutorials/models.html#model-output-format
v = Visualizer(im[:, :, ::-1],
               metadata=my_bond_metadata,
               scale=1, 
               instance_mode=2   # remove the colors of unsegmented pixels. This option is only available for segmentation models
               )
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2.namedWindow("image",0)
cv2.imshow("image",out.get_image()[:, :, ::-1])
cv2.waitKey(3000)
cv2.destroyWindow("image")

def showMask(outputs):
    mask = outputs["instances"].to("cpu").get("pred_masks").numpy()
    #这里的mask的通道数与检测到的示例的个数一致,把所有通道的mask合为一个通道
    img = np.zeros((mask.shape[1],mask.shape[2]))
    for i in range(mask.shape[0]):
        img += mask[i]

    np.where(img>0,255,0)
    cv2.namedWindow("mask",0)
    cv2.imshow("mask",img)
    cv2.waitKey(1)
    

from detectron2.data.detection_utils import read_image

img_path = r'~/datasets/data_dataset_coco/JPEGImages/10_color_1.jpg'
im = read_image(img_path, format="BGR")

# im = cv2.imread(img_path)
print(im)
outputs = predictor(im) 
# print(outputs.shape)
print(outputs)
showMask(outputs)
cv2.namedWindow("image",0)
cv2.imshow("image",im)
cv2.waitKey(3000)
cv2.destroyAllWindows()

你可能感兴趣的:(深度学习,目标检测,计算机视觉)