- 基于K8S设计实现机器学习管理调度平台
richenlin
机器学习
设计和实现一套基于Kubernetes(K8s)的机器学习管理调度平台,目标是利用K8s的容器化和调度能力,提供高效的资源管理、任务调度、可扩展性及灵活性,适应机器学习(ML)训练、推理等不同场景的需求。以下是平台设计的主要模块和实施步骤:1.系统架构概述该平台需要一个多层架构,其中K8s作为底层容器调度和资源管理平台,机器学习任务管理与调度层作为平台的核心模块。平台应具备高可用、弹性伸缩、任务监
- 【python数据挖掘之numpy】-数组及对象属性和数据转换
sc.溯琛
python数据挖掘numpy
Numpy是一个Python库,用于处理多维数组和矩阵,以及针对这些数组执行数学运算的函数。它提供了高效的数组对象和相关的操作,可以用于快速处理大量数据。Numpy的主要功能包括:创建数组、数组运算、数组索引和切片、线性代数、随机数生成等。Numpy在科学计算、数据分析、机器学习等领域都广泛应用。tips:(本博文在jupyter中实训)目录一、创建数组对象1.array()函数来创建数组的对象2
- 赋能农业数字化转型 用DeepSeek大模型开启智慧农业新纪元
jingwang-cs
人工智能人工智能后端
赋能农业数字化转型用DeepSeek大模型开启智慧农业新纪元当农业遇见DeepSeek大模型:从经验驱动到数据智能的跨越传统农业依赖“看天吃饭”,而「智慧农业」平台依托公司自主研发的农业大模型,深度融合DeepSeek前沿AI技术,构建“数据-模型-决策”全链路智能服务体系。通过深度学习历史种植数据、气象信息、土壤墒情等多维农业要素,平台可精准预测病虫害风险、产量波动及市场趋势,为农户提供科学种植
- spaCy 入门:自然语言处理的高效工具
zru_9602
人工智能自然语言处理人工智能
spaCy入门:自然语言处理的高效工具引言spaCy是一个功能强大的开源Python库,专注于工业级的自然语言处理(NLP)。它以其高效的性能、简洁的API和对多种语言的支持而闻名。无论是进行文本分析、信息提取还是构建智能聊天机器人,spaCy都是一个不可或缺的工具。本文将从零开始,介绍spaCy的基本功能和使用方法,并通过示例代码帮助你快速上手。1.安装spaCy在开始之前,首先需要安装spaC
- Transformer架构简略:DeepSeek 的底层基石
windwant
人工智能人工智能transformer架构
2017年,一篇名为《AttentionisAllYouNeed》的论文横空出世,提出了Transformer架构,彻底改变了自然语言处理(NLP)领域的格局。它不仅在各种NLP任务上取得了突破性进展,更成为了当今人工智能领域最具影响力的架构之一。一、从RNN到Transformer:突破瓶颈,开创先河在Transformer出现之前,循环神经网络(RNN)及其变体(如LSTM、GRU)是处理序列
- 神经网络:人工智能的核心技术
m0_75126181
人工智能神经网络深度学习
神经网络简介神经网络是一种模仿生物神经系统的计算模型,由大量相互连接的神经元组成。它通过学习大量的数据来完成复杂的模式识别和决策任务,是当前人工智能和机器学习领域最重要的技术之一。神经网络的基本结构包括输入层、隐藏层和输出层。输入层接收外部数据,隐藏层对数据进行处理和特征提取,输出层产生最终结果。神经元之间通过带权重的连接相互作用,通过调整这些权重来实现学习过程。神经网络的工作原理神经网络的工作原
- 强化学习是否能够在完全不确定的环境中找到一个合理的策略,还是说它只能在已知规则下生效?
concisedistinct
人工智能人工智能强化学习
强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,广泛应用于机器人控制、自动驾驶、游戏策略和金融决策等领域。其核心理念是通过与环境的互动,不断学习如何选择最优行动以最大化累积奖励。尽管强化学习在许多已知和相对确定的环境中表现出色,但在面对完全不确定或动态变化的环境时,其表现和可靠性是否依然能保持一致是一个值得深入探讨的问题。我们生活的世界充满了不确定性,尤其是在
- 别只会用别人的模型了,自学Ai大模型,顺序千万不要搞反了!刚入门的小白必备!
ai大模型应用开发
人工智能pdf机器学习面试AI
在使用诸如DeepSeek、ChatGPT、豆包、文心一言等大模型之余,你是否知道这些大模型背后的技术原理是什么?假如让你从头开始学习大模型,你知道应该遵循什么样的路线嘛?今天给大家介绍一下Ai大模型的学习路线,顺序千万不要搞反了!,大家可以按照这个路线进行学习。一、前置阶段数学:线性代数、高等数学自然语言处理:Word2Vec、Seq2SeqPython:Pyotch、Tensorflow二、基
- (一)spark是什么?
一智哇
大数据框架学习sparkbigdata大数据
1.spark是什么?spark是一个用来实现快速,通用的集群计算平台spark适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理,迭代算法,交互式查询,流处理。通过在一个统一的框架下支持这些不同的计算,spark使我们可以简单而低耗地把各种处理流程整合在一起。2.spark的用途(1):数据科学任务具备SQL、统计、预测建模(机器学习)等方面的经验,以及一定的python,matlab
- 智能模型轻量化:知识蒸馏技术如何重塑AI部署格局
人工智能
智能模型轻量化:知识蒸馏技术如何重塑AI部署格局前言在人工智能技术高速迭代的今天,模型优化领域正经历着静默的革命。当我们惊叹于DeepSeek在自然语言处理上的惊艳表现时,一个关键问题逐渐浮出水面:如何让这些"庞然大物"真正走入现实场景?知识蒸馏技术作为模型压缩领域的突破性方案,正在为AI技术的普惠化开辟新路径。一、技术本质的解构与重构知识蒸馏颠覆了传统模型训练的范式,构建了"师生传承"的新型学习
- 推荐收藏!数据分析必会的 10 个 python 库!
Python数据挖掘
深度学习机器学习数据分析及可视化数据分析python数据挖掘算法
大家好,今天给大家分享除了基本的NumPy、Pandas和Matplotlib之外的10个流行的数据分析Python库。文末提供资料和技术交流Scikit-learnScikit-learn是一个功能强大的机器学习库,为监督和无监督学习、模型选择和预处理提供了广泛的算法。Scikit-learn简化了构建机器学习模型的过程,使其成为数据科学家和分析师的热门选择。可以通过pip命令来进行安装。pip
- 探秘Mixup:数据增强的新利器
荣正青
探秘Mixup:数据增强的新利器mixupImplementationofthemixuptrainingmethod项目地址:https://gitcode.com/gh_mirrors/mi/mixup项目简介是一个由HongyiZhang开发的Python库,它实现了机器学习中的数据增强策略——Mixup方法。这个项目的目标是通过混合不同样本的数据点生成新的训练样本,从而帮助模型更好地学习数
- AI创业机遇:垂直领域无限可能
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI创业垂直领域机器学习深度学习自然语言处理计算机视觉无人驾驶1.背景介绍人工智能(AI)正在各行各业掀起一场革命,为创业者带来了前所未有的机遇。垂直领域,即特定行业或细分市场,正在成为AI创业的热门选择。本文将深入探讨AI在垂直领域的应用,并提供实用的指南,帮助读者把握AI创业机遇。2.核心概念与联系2.1AI与垂直领域AI在垂直领域的应用,需要理解AI与垂直领域的关系。AI可以为垂直领域提供智
- Deepseek 不同版本有什么区别
百态老人
人工智能
嗯,我现在需要回答关于DeepSeek不同版本的区别的问题,我要仔细看一下我搜索到的资料,可能有些证据之间会有矛盾,需要小心处理。首先,我应该先梳理每个证据中提到的各个版本的信息,然后整理它们的发布时间、特点、优缺点以及对比情况。根据,DeepSeek的版本包括V1、V2、V2.5、R1-Lite、V3、R1系列。其中,V1在2024年1月发布,专注于自然语言处理和编码任务,但缺乏多模态支持和复杂
- DeepSeek人工智能领域的创新先锋与变革力量
CodeJourney.
数据库算法人工智能
在科技飞速发展的时代,人工智能(AI)无疑是最具变革性的力量之一。DeepSeek作为人工智能领域的关键参与者,正以其独特的技术路径和创新理念,深刻影响着行业的发展格局。深入解读相关信息,能让我们更全面地认识DeepSeek在人工智能领域的重要贡献、技术优势、发展战略以及其带来的广泛影响。一、DeepSeek的技术突破与创新(一)核心技术成就DeepSeek在自然语言处理(NLP)和计算机视觉等人
- 国内如何快速拿下微软AI-900!?
全球认证考试中心
microsoft人工智能ai
微软AI-900认证,全称AzureAIFundamentals是由微软官方最新研发的一项有关人工智能的认证证书。想要获得该证书,需通过AI-900测试或者AI-102。适用于全行业、全学龄人员,考试不设置专业和年龄限制,对人工智能感兴趣即可参加。获得证书能够证明证书持有者在机器学习(ML)、人工智能(AI)基础概念、云技术基础及MicrosoftAzure服务等多方面的掌握程度。此考试的考生应熟
- 深度学习代码分析——自用
肆——
深度学习人工智能笔记
代码来自:https://github.com/ChuHan89/WSSS-Tissue?tab=readme-ov-file借助了一些人工智能1_train_stage1.py代码功能总览该代码是弱监督语义分割(WSSS)流程的Stage1训练与测试脚本,核心任务是通过多标签分类模型生成图像级标签,为后续生成伪掩码(Pseudo-Masks)提供基础。代码分为train_phase和test_p
- 词向量(Word Embedding)
呵呵,不解释868
easyui前端javascript
词向量(WordEmbedding)是一种将自然语言中的单词映射到连续的向量空间的技术,使得语义相似的单词在向量空间中彼此接近。这种技术是现代自然语言处理(NLP)任务的基础之一,广泛应用于文本分类、机器翻译、问答系统等。###一、词向量的基本原理####1.离散表示vs连续表示传统的自然语言处理方法通常使用离散表示(如one-hot编码)来表示单词。然而,这种方法存在以下问题:-**维度灾难**
- Python | Pytorch | Tensor知识点总结
漂亮_大男孩
Python拾遗pythonpytorch深度学习人工智能
如是我闻:Tensor是我们接触Pytorch了解到的第一个概念,这里是一个关于PyTorchTensor主题的知识点总结,涵盖了Tensor的基本概念、创建方式、运算操作、梯度计算和GPU加速等内容。1.Tensor基本概念Tensor是PyTorch的核心数据结构,类似于NumPy的ndarray,但支持GPU加速和自动求导。PyTorch的Tensor具有动态计算图,可用于深度学习模型的前向
- [自然语言处理基础]NumPy基本操作
Steve lu
自然语言处理NLP自然语言处理numpypythonconda人工智能机器学习深度学习
什么是NumPyNumPy是Python中科学计算的基本包。它是一个Python库,提供多维数组对象、各种派生对象(如掩码数组和矩阵)以及用于对数组进行快速操作的各种例程,包括数学、逻辑、形状操作、排序、选择、I/O、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。NumPy数组在创建时具有固定大小,这与Python列表(可以动态增长)不同。更改数组的大小ndarray将创建新数组并删除
- 一文讲清楚自我学习和深度学习
平凡而伟大(心之所向)
人工智能人工智能深度学习机器学习
自我学习(Self-Learning)和深度学习(DeepLearning)是两个不同的概念,但它们在某些应用场景中可以有交集。下面我们将分别介绍这两个概念,并探讨如何将它们结合起来用于自我学习系统。自我学习(Self-Learning)自我学习是指个体或系统通过自主探索、实践和反思来获取知识和技能的过程。它强调的是无需外部直接指导的学习方式,通常包括以下几个方面:自主性:学习者根据自己的兴趣、需
- 【量子退火(Quantum Annealing, QA)在Machine Learning Classification中的应用】
搞技术的妹子
机器学习量子计算人工智能
随着量子计算技术的发展,**量子退火(QuantumAnnealing,QA)成为了优化问题中一种潜力巨大的方法。它不仅可以用于求解传统优化问题,还被逐渐应用于机器学习领域,特别是机器学习分类(MachineLearningClassification)**任务中。在这篇博客中,我们将探讨量子退火在机器学习分类中的应用,并通过一个实际的案例来展示如何使用量子退火优化分类模型。什么是量子退火(Qua
- 二维随机变量
Shockang
机器学习数学通关指南机器学习人工智能数学概率论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.二维随机变量基础1.1基本定义二维随机变量(X,Y)(X,Y)(X,Y)是由两个定义在同一概率空间上的随机变量XXX和YYY组成的向量样本空间:每个试验结果e∈Se\inSe∈S对应到平面上的一个点(X(e),Y(e))(
- 似然函数与极大似然估计
Shockang
机器学习数学通关指南机器学习人工智能数学概率论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.似然函数:直观理解与数学定义核心概念似然函数是机器学习中参数估计的基石,它从数据与模型之间的关系出发,提供了一种优化参数的数学框架。直观理解:假设你正在调整相机参数以拍摄最清晰的照片。似然函数就像是一个"清晰度指标",告诉
- 正交投影与内积空间:机器学习的几何基础
Shockang
机器学习数学通关指南机器学习人工智能线性代数数学
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.内积空间的数学定义1.1代数定义✏️两个维度相同的向量a=[a1,…,an]\mathbf{a}=[a_1,\dots,a_n]a=[a1,…,an]和b=[b1,…,bn]\mathbf{b}=[b_1,\dots,b_
- 特征值与特征向量
Shockang
机器学习数学通关指南机器学习线性代数矩阵数学
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文一、定义与数学表达特征向量:对于方阵AAA,若存在非零向量v\mathbf{v}v满足Av=λvA\mathbf{v}=\lambda\mathbf{v}Av=λv,则v\mathbf{v}v称为AAA的特征向量。特征值:对应
- SpringAI赋能Java开发打造智能应用
java技术小馆
javaAI编程
一、SpringAI是什么?为什么你需要它?想象一下,你的Java应用能够:理解自然语言自动生成代码智能分析数据提供个性化推荐这就是SpringAI带来的变革!它是Spring官方推出的AI集成框架,让你的Java应用轻松获得AI能力。传统开发vsSpringAI开发对比:能力传统开发SpringAI开发自然语言处理需要集成第三方SDK开箱即用开发效率手动实现复杂逻辑自动生成代码维护成本高低可扩展
- LLM OS 系统架构详细设计
AI天才研究院
AI大模型企业级应用开发实战系统架构
LLMOS系统架构详细设计1.背景介绍近年来,大型语言模型(LargeLanguageModel,LLM)取得了飞速发展,在自然语言处理、对话系统、文本生成等领域展现出卓越的性能。然而,现有的LLM系统架构仍然存在诸多局限性,例如可扩展性不足、资源利用率低下、缺乏灵活的应用开发支持等。为了充分发挥LLM的潜力,迫切需要一个高效、灵活、易用的LLM操作系统(OperatingSystem,OS)。本
- mac系统下安装pycharm
连小黑
pythonpycharmmacospython
mac系统下安装pycharm前言Windows系统安装教程传送门链接:https://blog.csdn.net/lianxiaohei/article/details/121694126随着人工智能的不断发展,机器学习这门技术也越来越重要,也有很多人都因为做自动化,爬虫会学python,今天写的是pycharm编译器,在mac上如何安装,废话不多说,上步骤一、第一步下载示例:下载安装软件的第一
- 【机器学习】Reinforcement Learning-强化学习基本概念
长相忆兮长相忆
深度学习人工智能算法机器学习
1、Q值与V值1.1Q值和V值的定义Q值:也称为动作价值函数,评估动作的价值,它代表了智能体选择这个动作后,一直到最终状态奖励总和的期望,表示为Q(s,a),其中s是状态,a是动作。V值:评估状态的价值,也称为状态价值函数,表示为V(s),其中s是状态。它代表了智能体在这个状态下,一直到最终状态的奖励总和的期望。V值与动作无关只与状态有关。Q值和V值的概念是一致的,都是衡量在马可洛夫树上某一个节点
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo