网络架构
微调
训练
重用分类器权重
固定一些层—可以有效降低模型复杂度
总结
%matplotlib inline
import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
# 载入数据集
d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL + 'hotdog.zip',
'fba480ffa8aa7e0febbb511d181409f899b9baa5')
data_dir = d2l.download_extract('hotdog')
train_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'))
test_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'))
# 展示载入后多图片---发现图片大小不一致
hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)]
d2l.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4);
# 数据增广
normalize = torchvision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
# 定义了一个图像的归一化操作,每个像素都会减去均值(0.485, 0.456, 0.406)然后再除以标准差(0.229, 0.224, 0.225)。这个操作可以使得图像的像素值在更稳定的范围内,对训练有好处。
train_augs = torchvision.transforms.Compose([
torchvision.transforms.RandomResizedCrop(224),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(), normalize])
test_augs = torchvision.transforms.Compose([
torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(), normalize])
finetune_net = torchvision.models.resnet18(pretrained=True)
# 引入已有模型并且保留其训练好的参数---pretrained=True
finetune_net.fc = nn.Linear(finetune_net.fc.in_features, 2)
# 将该模型的最后一层重新对输出类别分为两类
nn.init.xavier_uniform_(finetune_net.fc.weight);
# 初始化模型最后一层的参数进行训练
# 微调模式下的训练
def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=5,
param_group=True):
train_iter = torch.utils.data.DataLoader(
torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'),
transform=train_augs),
batch_size=batch_size, shuffle=True)
test_iter = torch.utils.data.DataLoader(
torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'),
transform=test_augs),
batch_size=batch_size)
devices = d2l.try_all_gpus()
loss = nn.CrossEntropyLoss(reduction="none")
if param_group:
params_1x = [
param for name, param in net.named_parameters()
if name not in ["fc.weight", "fc.bias"]]
trainer = torch.optim.SGD([{
'params': params_1x}, {
'params': net.fc.parameters(),
'lr': learning_rate * 10}], lr=learning_rate,
weight_decay=0.001)
# 最后一层学习率放大十倍保证训练的快速进行,其他层使用小学习率
else:
trainer = torch.optim.SGD(net.parameters(), lr=learning_rate,
weight_decay=0.001)
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
devices)
# 初始学习率较小因为模型基本稳定
train_fine_tuning(finetune_net, 5e-5)
!pip install d2l
!pip install matplotlib_inline
!pip install matplotlib==3.0.0
%matplotlib inline
import collections
import math
import os
import shutil
import pandas as pd
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
# 设定数据集所在路径---共两种方法---由demo控制
d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip',
'2068874e4b9a9f0fb07ebe0ad2b29754449ccacd')
demo = True
if demo:
data_dir = d2l.download_extract('cifar10_tiny')
else:
data_dir = '../data/cifar-10/'
# 整理数据
def read_csv_labels(fname):
"""读取fname来给标签字典返回一个文件名"""
with open(fname, 'r') as f:
lines = f.readlines()[1:]
token = [l.rstrip().split(',') for l in lines]
return dict(((name, label) for name, label in token))
labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
labels
# 将训练集和验证集从原始的训练集中拆分出来
def copyfile(filename, target_dir):
"""将文件复制到目标目录。"""
os.makedirs(target_dir, exist_ok=True) # 是否有目录没有就创建
shutil.copy(filename, target_dir) # 将文件复制到目标目录
def reorg_train_valid(data_dir, labels, valid_ratio):
n = collections.Counter(labels.values()).most_common()[-1][1]
n_valid_per_label = max(1, math.floor(n * valid_ratio))
label_count = {}
for train_file in os.listdir(os.path.join(data_dir, 'train')):
label = labels[train_file.split('.')[0]]
fname = os.path.join(data_dir, 'train', train_file)
copyfile(
fname,
os.path.join(data_dir, 'train_valid_test', 'train_valid', label))
if label not in label_count or label_count[label] < n_valid_per_label:
copyfile(
fname,
os.path.join(data_dir, 'train_valid_test', 'valid', label))
label_count[label] = label_count.get(label, 0) + 1
else:
copyfile(
fname,
os.path.join(data_dir, 'train_valid_test', 'train', label))
return n_valid_per_label
# 测试集的整理
def reorg_test(data_dir):
for test_file in os.listdir(os.path.join(data_dir, 'test')):
copyfile(
os.path.join(data_dir, 'test', test_file),
os.path.join(data_dir, 'train_valid_test', 'test', 'unknown'))
def reorg_cifar10_data(data_dir, valid_ratio):
labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
reorg_train_valid(data_dir, labels, valid_ratio)
reorg_test(data_dir)
batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_cifar10_data(data_dir, valid_ratio)
# 数据增广
transform_train = torchvision.transforms.Compose([
torchvision.transforms.Resize(40),
torchvision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0),
ratio=(1.0, 1.0)),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465],
[0.2023, 0.1994, 0.2010])])
transform_test = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465],
[0.2023, 0.1994, 0.2010])])
# 读取由原始图像组成的数据集
train_ds, train_valid_ds = [
torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'train_valid_test', folder),
transform=transform_train) for folder in ['train', 'train_valid']]
# 训练集因为需要增广所以和测试分开
valid_ds, test_ds = [
torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'train_valid_test', folder),
transform=transform_test) for folder in ['valid', 'test']]
# 指定上面定义的所有图像增广操作---生成数据迭代器
train_iter, train_valid_iter = [
torch.utils.data.DataLoader(dataset, batch_size, shuffle=True,
drop_last=True)
for dataset in (train_ds, train_valid_ds)]
valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False,
drop_last=True)
test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False,
drop_last=False)
# 模型
def get_net():
num_classes = 10
net = d2l.resnet18(num_classes, 3)
# 输入三通道,输出num_classes分类
return net
loss = nn.CrossEntropyLoss(reduction="none")
# 训练函数
# lr_period,lr_decay 每隔lr_period将学习率降低lr_decay
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay):
trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9,
weight_decay=wd)
scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)
# lr = if lr_period==epoch: lr*lr_decay
num_batches, timer = len(train_iter), d2l.Timer()
legend = ['train loss', 'train acc']
if valid_iter is not None:
legend.append('valid acc')
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=legend)
net = nn.DataParallel(net, device_ids=devices).to(devices[0])
# 多个GPU
for epoch in range(num_epochs):
net.train()
metric = d2l.Accumulator(3)
for i, (features, labels) in enumerate(train_iter):
timer.start()
l, acc = d2l.train_batch_ch13(net, features, labels, loss,
trainer, devices)
metric.add(l, acc, labels.shape[0])
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(
epoch + (i + 1) / num_batches,
(metric[0] / metric[2], metric[1] / metric[2], None))
if valid_iter is not None:
valid_acc = d2l.evaluate_accuracy_gpu(net, valid_iter)
animator.add(epoch + 1, (None, None, valid_acc))
scheduler.step() # 参数更新
# 训练验证
devices, num_epochs, lr, wd = d2l.try_all_gpus(), 50, 2e-4, 5e-4
lr_period, lr_decay, net = 4, 0.9, get_net()
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay)
# 对测试集进行分类并提交结果
net, preds = get_net(), []
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,
lr_decay)
for X, _ in test_iter:
y_hat = net(X.to(devices[0]))
preds.extend(y_hat.argmax(dim=1).type(torch.int32).cpu().numpy())
sorted_ids = list(range(1, len(test_ds) + 1))
sorted_ids.sort(key=lambda x: str(x))
df = pd.DataFrame({'id': sorted_ids, 'label': preds})
df['label'] = df['label'].apply(lambda x: train_valid_ds.classes[x])
df.to_csv('submission.csv', index=False)