pytorch中对于一般的序列模型,直接使用torch.nn.Sequential类即可以实现,这点类似于keras,但是更多的时候面对复杂的模型,比如:多输入多输出、多分支模型、跨层连接模型、带有自定义层的模型等,就需要自己来定义一个模型了。Keras更常见的操作是通过继承Layer类来实现自定义层,不推荐去继承Model类定义模型。pytorch中其实一般没有特别明显的Layer和Module的区别,不管是 自定义层、自定义块、自定义模型,都是通过继承Module类完成的,这一点很重要。其实Sequential类也是继承自Module类的。
"""Pytorch中神经网络模块化接口nn的了解"""
注意:当然也可以直接通过继承torch.autograd.Function类来自定义一个层,但是这很不推荐,不提倡,至于为什么后面会介绍。
总结:pytorch里面一切自定义操作基本上都是继承nn.Module类来实现的
本文仅仅先讨论使用Module来实现自定义模块,自定义层先不做讨论。
class Module(object):
def __init__(self):
def forward(self, *input):
def add_module(self, name, module):
def cuda(self, device=None):
def cpu(self):
def __call__(self, *input, **kwargs):
def parameters(self, recurse=True):
def named_parameters(self, prefix='', recurse=True):
def children(self):
def named_children(self):
def modules(self):
def named_modules(self, memo=None, prefix=''):
def train(self, mode=True):
def eval(self):
def zero_grad(self):
def __repr__(self):
def __dir__(self):
'''
有一部分没有完全列出来
'''
我们在定义自已的网络的时候,需要继承nn.Module类,并重新实现构造函数__init__构造函数和forward这两个方法。但有一些注意技巧:
(1)一般把网络中具有可学习参数的层(如全连接层、卷积层等)放在构造函数__init__()中,当然也可以把不具有参数的层也放在里面;
(2)不具有可学习参数的层(如ReLU、dropout、BatchNormanation层)可放在构造函数中,也可不放在构造函数中,如果不放在构造函数__init__里面,则在forward方法里面可以使用nn.functional来代替
(3)forward方法是必须要重写的,它是实现模型的功能,实现各个层之间的连接关系的核心。
下面先看一个简单的例子。
import torch
class MyNet(torch.nn.Module):
def __init__(self):
super(MyNet, self).__init__() # 第一句话,调用父类的构造函数
self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
self.relu1=torch.nn.ReLU()
self.max_pooling1=torch.nn.MaxPool2d(2,1)
self.conv2 = torch.nn.Conv2d(3, 32, 3, 1, 1)
self.relu2=torch.nn.ReLU()
self.max_pooling2=torch.nn.MaxPool2d(2,1)
self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
self.dense2 = torch.nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.max_pooling1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.max_pooling2(x)
x = self.dense1(x)
x = self.dense2(x)
return x
model = MyNet()
print(model)
'''运行结果为:
MyNet(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(max_pooling1): MaxPool2d(kernel_size=2, stride=1, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu2): ReLU()
(max_pooling2): MaxPool2d(kernel_size=2, stride=1, padding=0, dilation=1, ceil_mode=False)
(dense1): Linear(in_features=288, out_features=128, bias=True)
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
'''
其中:
class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
注意:上面的是将所有的层都放在了构造函数__init__里面,但是只是定义了一系列的层,各个层之间到底是什么连接关系并没有,而是在forward里面实现所有层的连接关系,当然这里依然是顺序连接的。下面再来看一下一个例子:
import torch
import torch.nn.functional as F
class MyNet(torch.nn.Module):
def __init__(self):
super(MyNet, self).__init__() # 第一句话,调用父类的构造函数
self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
self.conv2 = torch.nn.Conv2d(3, 32, 3, 1, 1)
self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
self.dense2 = torch.nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = F.max_pool2d(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x)
x = self.dense1(x)
x = self.dense2(x)
return x
model = MyNet()
print(model)
'''运行结果为:
MyNet(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(dense1): Linear(in_features=288, out_features=128, bias=True)
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
'''
注意:此时,将没有训练参数的层没有放在构造函数里面了,所以这些层就不会出现在model里面,但是运行关系是在forward里面通过functional的方法实现的。
总结:所有放在构造函数__init__里面的层的都是这个模型的“固有属性”.
Module类是非常灵活的,可以有很多灵活的实现方式,下面将一一介绍。
即将几个层包装在一起作为一个大的层(块),前面的一篇文章详细介绍了Sequential类的使用,包括常见的三种方式,以及每一种方式的优缺点,参见:PyTorch基础教程学习笔记(四): nn.Sequential
所以这里对层的包装当然也可以通过这三种方式了。
import torch.nn as nn
from collections import OrderedDict
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.conv_block = nn.Sequential(
nn.Conv2d(3, 32, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(2))
self.dense_block = nn.Sequential(
nn.Linear(32 * 3 * 3, 128),
nn.ReLU(),
nn.Linear(128, 10)
)
# 在这里实现层之间的连接关系,其实就是所谓的前向传播
def forward(self, x):
conv_out = self.conv_block(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense_block(res)
return out
model = MyNet()
print(model)
'''运行结果为:
MyNet(
(conv_block): Sequential(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(dense_block): Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=10, bias=True)
)
)
'''
同前面的文章,这里在每一个包装块里面,各个层是没有名称的,默认按照0、1、2、3、4来排名。
import torch.nn as nn
from collections import OrderedDict
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.conv_block = nn.Sequential(
OrderedDict(
[
("conv1", nn.Conv2d(3, 32, 3, 1, 1)),
("relu1", nn.ReLU()),
("pool", nn.MaxPool2d(2))
]
))
self.dense_block = nn.Sequential(
OrderedDict([
("dense1", nn.Linear(32 * 3 * 3, 128)),
("relu2", nn.ReLU()),
("dense2", nn.Linear(128, 10))
])
)
def forward(self, x):
conv_out = self.conv_block(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense_block(res)
return out
model = MyNet()
print(model)
'''运行结果为:
MyNet(
(conv_block): Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(dense_block): Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
)
'''
import torch.nn as nn
from collections import OrderedDict
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.conv_block=torch.nn.Sequential()
self.conv_block.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
self.conv_block.add_module("relu1",torch.nn.ReLU())
self.conv_block.add_module("pool1",torch.nn.MaxPool2d(2))
self.dense_block = torch.nn.Sequential()
self.dense_block.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
self.dense_block.add_module("relu2",torch.nn.ReLU())
self.dense_block.add_module("dense2",torch.nn.Linear(128, 10))
def forward(self, x):
conv_out = self.conv_block(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense_block(res)
return out
model = MyNet()
print(model)
'''运行结果为:
MyNet(
(conv_block): Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(dense_block): Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
)
'''
上面的方式二和方式三,在每一个包装块里面,每个层都是有名称的。
特别注意:Sequential类虽然继承自Module类,二者有相似部分,但是也有很多不同的部分,集中体现在:
Sequenrial类实现了整数索引,故而可以使用model[index] 这样的方式获取一个层,但是Module类并没有实现整数索引,不能够通过整数索引来获得层,那该怎么办呢?它提供了几个主要的方法,如下:
def children(self):
def named_children(self):
def modules(self):
def named_modules(self, memo=None, prefix=''):
'''
注意:这几个方法返回的都是一个Iterator迭代器,故而通过for循环访问,当然也可以通过next
'''
下面就以上面的构建的网络为例子来说明,
import torch.nn as nn
from collections import OrderedDict
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.conv_block=torch.nn.Sequential()
self.conv_block.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
self.conv_block.add_module("relu1",torch.nn.ReLU())
self.conv_block.add_module("pool1",torch.nn.MaxPool2d(2))
self.dense_block = torch.nn.Sequential()
self.dense_block.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
self.dense_block.add_module("relu2",torch.nn.ReLU())
self.dense_block.add_module("dense2",torch.nn.Linear(128, 10))
def forward(self, x):
conv_out = self.conv_block(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense_block(res)
return out
model = MyNet()
for i in model.children():
print(i)
print(type(i)) # 查看每一次迭代的元素到底是什么类型,实际上是 Sequential 类型,所以有可以使用下标index索引来获取每一个Sequenrial 里面的具体层
'''运行结果为:
Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
'''
for i in model.named_children():
print(i)
print(type(i)) # 查看每一次迭代的元素到底是什么类型,实际上是 返回一个tuple,tuple 的第一个元素是
'''运行结果为:
('conv_block', Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
))
('dense_block', Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
))
'''
总结:
(1)model.children()和model.named_children()方法返回的是迭代器iterator;
(2)model.children():每一次迭代返回的每一个元素实际上是 Sequential 类型,而Sequential类型又可以使用下标index索引来获取每一个Sequenrial 里面的具体层,比如conv层、dense层等;
(3)model.named_children():每一次迭代返回的每一个元素实际上是 一个元组类型,元组的第一个元素是名称,第二个元素就是对应的层或者是Sequential。
for i in model.modules():
print(i)
print("==================================================")
'''运行结果为:
MyNet(
(conv_block): Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(dense_block): Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
)
==================================================
Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
==================================================
Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
==================================================
ReLU()
==================================================
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
==================================================
Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
==================================================
Linear(in_features=288, out_features=128, bias=True)
==================================================
ReLU()
==================================================
Linear(in_features=128, out_features=10, bias=True)
==================================================
'''
for i in model.named_modules():
print(i)
print("==================================================")
'''运行结果是:
('', MyNet(
(conv_block): Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(dense_block): Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
))
==================================================
('conv_block', Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
))
==================================================
('conv_block.conv1', Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))
==================================================
('conv_block.relu1', ReLU())
==================================================
('conv_block.pool1', MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))
==================================================
('dense_block', Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
))
==================================================
('dense_block.dense1', Linear(in_features=288, out_features=128, bias=True))
==================================================
('dense_block.relu2', ReLU())
==================================================
('dense_block.dense2', Linear(in_features=128, out_features=10, bias=True))
==================================================
'''
总结:
(1)model.modules()和model.named_modules()方法返回的是迭代器iterator;
(2)model的modules()方法和named_modules()方法都会将整个模型的所有构成(包括包装层、单独的层、自定义层等)由浅入深依次遍历出来,只不过modules()返回的每一个元素是直接返回的层对象本身,而named_modules()返回的每一个元素是一个元组,第一个元素是名称,第二个元素才是层对象本身。
(3)如何理解children和modules之间的这种差异性。注意pytorch里面不管是模型、层、激活函数、损失函数都可以当成是Module的拓展,所以modules和named_modules会层层迭代,由浅入深,将每一个自定义块block、block里面的每一个层都当成是module来迭代。而children就比较直观,就表示的是所谓的“孩子”,所以没有层层迭代深入。
注意:上面这四个方法是以层包装为例来说明的,如果没有层的包装,我们依然可以使用这四个方法,其实结果也是类似的这样去推,这里就不再列出来了。