- Python 中最易误解的功能
前端
有些功能即使是经验丰富的开发者也会被难住。我也曾被它们绊倒,花数小时挠头苦思,最终才学会如何正确应对。所以,不浪费时间,让我们来探索Python中最易误解的功能,它们为何棘手,以及你如何能最终掌握它们。1.可变默认参数问题:如果你曾写过一个带有默认列表或字典参数的函数,你可能会注意到一些奇怪的现象。它会在函数调用之间“记住”值!defadd_item(item,items=[]):items.ap
- 机器学习02-发展历史补充
坐吃山猪
机器学习机器学习人工智能
机器学习02-发展历史补充文章目录机器学习02-发展历史补充1-机器学习个人理解1-初始阶段:统计学习和模式识别(20世纪50年代至80年代)2-第二阶段【集成时代】+【核方法】(20世纪90年代至2000年代初期)3-第三阶段【特征工程】+【模型优化】(2000年代中期至2010年代初期)4-大规模数据和分布式计算(2010年代中后期)5-自动化机器学习和特征选择(2010年代末至今)2-神经网
- Python数据分析高频面试题及答案
闲人编程
程序员面试python数据分析面试题核心
目录1.基础知识2.数据处理3.数据可视化4.机器学习模型5.进阶问题6.数据清洗与预处理7.数据转换与操作8.时间序列分析9.高级数据分析技术10.数据降维与特征选择11.模型评估与优化12.数据操作与转换13.数据筛选与分析14.数据可视化与报告15.数据统计与分析16.高级数据处理以下是一些Python数据分析的高频核心面试题及其答案,涵盖了基础知识、数据1.基础知识问1:Python中列表
- ORACLE与SQL SERVER的区别
nanzhuhe
文章笔记数据库Oracle
ORACLE与SQLSERVER的区别转载自:https://www.cnblogs.com/chuncn/archive/2009/01/28/1381262.html体系结构ORACLE的文件体系结构为:数据文件.DBF(真实数据)日志文件.RDO控制文件.CTL参数文件.ORASQLSERVER的文件体系结构为:.MDF(数据字典).NDF(数据文件).LDF(日志文件)ORACLE存储结构
- Pytorch 三小时极限入门教程
power-辰南
人工智能深度学习pytorch人工智能
一、引言在当今的人工智能领域,深度学习占据了举足轻重的地位。而Pytorch作为一款广受欢迎的深度学习框架,以其简洁、灵活的特性,吸引了大量开发者投身其中。无论是科研人员探索前沿的神经网络架构,还是工程师将深度学习技术落地到实际项目,Pytorch都提供了强大的支持。本教程将带你从零基础开始,一步步深入了解Pytorch的核心知识,助你顺利踏上深度学习的征程。二、Pytorch基础环境搭建安装An
- Python机器学习之XGBoost从入门到实战(基本理论说明)
雪域枫蓝
PythonAtificialIntelligence机器学习python分布式
Xgboost从基础到实战XGBoost:eXtremeGradientBoosting*应用机器学习领域的一个强有力的工具*GradientBootingMachines(GBM)的优化表现,快速有效—深盟分布式机器学习开源平台(DistributedmachinelearningCommunity,DMLC)的分支—DMLC也开源流行的深度学习库mxnet*GBM:Machine:机器学习模型
- 【数据分析岗】关于数据分析岗面试python的金典问题+解答,包含数据读取、数据清洗、数据分析、机器学习等内容
摇光~
数据分析面试python
大家好,我是摇光~,用大白话讲解所有你难懂的知识点最近和几个大佬交流了,说了很多关于现在职场面试等问题,然后也找他们问了问他们基本面试的话都会提什么问题。所以我收集了很多关于python的面试题,希望对大家面试有用。类别1:数据读取与处理问题1:如何用Python从Excel文件中读取数据?答:在Python中,可以使用pandas库从Excel文件中读取数据。pandas提供了read_exce
- 【Python篇】深入机器学习核心:XGBoost 从入门到实战
半截诗
Pythonpython机器学习深度学习分类回归数据分析XGBoost
文章目录XGBoost完整学习指南:从零开始掌握梯度提升1.前言2.什么是XGBoost?2.1梯度提升简介3.安装XGBoost4.数据准备4.1加载数据4.2数据集划分5.XGBoost基础操作5.1转换为DMatrix格式5.2设置参数5.3模型训练5.4预测6.模型评估7.超参数调优7.1常用超参数7.2网格搜索8.XGBoost特征重要性分析9.高级功能扩展9.1模型解释与可解释性9.2
- 【YOLOv8杂草作物目标检测】
stsdddd
YOLO目标检测目标检测YOLO目标检测人工智能
YOLOv8杂草目标检测算法介绍模型和数据集下载算法介绍YOLOv8在禾本科杂草目标检测方面有显著的应用和效果。以下是一些关键信息的总结:农作物幼苗与杂草检测系统:基于YOLOv8深度学习框架,通过2822张图片训练了一个目标检测模型,用于检测田间的农作物幼苗与杂草对象。该系统支持图片、视频以及摄像头进行目标检测,并能保存检测结果。系统界面可实时显示目标位置、目标总数、置信度、用时等信息。YOLO
- HIVE的权限控制和超级管理员的实现
weixin_34364071
大数据数据库java
Hive用户权限管理从remote部署hive和mysql元数据表字典看,已经明确hive是通过存储在元数据中的信息来管理用户权限。现在重点是Hive怎么管理用户权限。首先要回答的是用户是怎么来的,发现hive有创建角色的命令,但没有创建用户的命令,显然Hive的用户不是在mysql中创建的。在回答这个问题之前,先初步了解下Hive的权限管理机制。Hive用户组和用户即Linux用户组和用户,和h
- 深度学习(1)
浅忆へ梦微凉
深度学习人工智能深度学习学习方法python
一、torch的安装基于直接设备情况,选择合适的torch版本,有显卡的建议安装GPU版本,可以通过nvidia-smi命令来查看显卡驱动的版本,在官网中根据cuda版本,选择合适的版本号,下面是安装示例代码GPU:pipinstalltorch==2.5.0torchvision==0.20.0torchaudio==2.5.0--index-urlhttps://download.pytorc
- 提升数据科学工作流效率的10个Jupyter Notebook高级特性
JupyterNotebooks已成为数据科学家、机器学习工程师和Python开发人员的核心开发工具。其核心优势在于提供了一个集成式环境,支持代码执行、文本编辑和数据可视化的无缝整合。尽管大多数用户熟悉其基本功能,但许多能显著提升工作效率的高级特性往往被忽视。本文将介绍一些高级功能,帮助您在数据科学项目中充分发挥JupyterNotebooks的潜力。1、Magic命令:高效的命令行接口Jupyt
- Python 数据建模完整流程指南
木觞清
3天入门Pythonpython开发语言
在数据科学和机器学习中,建模是一个至关重要的过程。通过有效的数据建模,我们能够从原始数据中提取有用的洞察,并为预测或分类任务提供支持。在本篇博客中,我们将通过Python展示数据建模的完整流程,包括数据准备、建模、评估和优化等步骤。1.导入必要的库在进行任何数据分析或建模之前,首先需要导入必需的Python库。这些库提供了各种工具和算法,帮助我们更高效地完成任务。importnumpyasnpim
- 深度学习常用格式转化脚本xml2yolo/coco2yolo/bdd2yolo/frame2video等
qq1309399183
计算机视觉实战项目集合深度学习人工智能格式转化脚本voc2yolo格式转化数据集格式转换xml2yolococo2yolo
文章目录1.**数据集格式转换脚本**`coco2yolo.py`示例注释:注释说明:`xml2yolo.py`示例注释:注释说明:2.**数据集可视化与统计**`vis_yolo_files.py`示例注释:注释说明:3.**其他工具脚本**`frames2video.py`示例注释:注释说明:该项目提供了一系列用于深度学习的数据处理工具,主要功能包括:数据集格式转换:提供多种脚本,将不同格式的
- LLMs,即大型语言模型
maopig
AI语言模型人工智能自然语言处理
LLMs,即大型语言模型,是一类基于深度学习的人工智能模型,它们通过海量的数据和大量的计算资源进行训练,可以理解和生成自然语言。LLMs的核心架构是Transformer,其关键在于自注意力机制,使得模型能够同时对输入的所有位置进行“关注”,从而更好地捕捉长距离的语义依赖关系。LLMs在众多领域都有广泛的应用,如自然语言理解(NLU),语言生成,以及语音识别和合成等。例如,它们能够理解人类的语言
- 【LLM】大语言模型(LLMs)
林九生
人工智能语言模型人工智能自然语言处理
大型语言模型(LLMs)1.什么是大型语言模型?大型语言模型(LargeLanguageModel,LLM)是基于深度学习的自然语言处理模型,能够理解和生成自然语言文本。它们通过在大规模文本数据上进行训练,学习语言的语法、语义和各种语言特征,从而可以执行诸如文本生成、翻译、总结、问答等多种语言任务。以下是大型语言模型的定义和基本原理:1.1定义大型语言模型是由大量参数组成的神经网络,这些参数通过在
- 大语言模型(LLMs)入门教程(非常详细)从零基础入门到精通,看完这一篇就够了
大模型零基础教程
语言模型人工智能自然语言处理大模型
大语言模型(LLMs)作为人工智能(AI)领域的一项突破性发展,已经改变了自然语言处理(NLP)和机器学习(ML)应用的面貌。这些模型,包括OpenAI的GPT-4o和Google的gemini系列等,已经展现出了在理解和生成类人文本方面的令人印象深刻的能力,使它们成为各行各业的宝贵工具。如下这份指南将涵盖LLMs的基础知识、训练过程、用例和未来趋势……一.WhatareLargeLanguage
- 了解python的错误与异常
00后程序员 张艳海
htmlpythonjava服务器前端
了解错误与异常错误类型描述SyntaxError语法错误,通常指代码有拼写错误、缺少括号、引号配对错误等。NameError名称错误,通常指变量或函数名称未定义或拼写错误。TypeError类型错误,通常因为尝试使用不支持的数据类型进行操作,例如对整数类型执行字符串方法。IndexError数组越界错误,通常因为尝试访问列表、元组或字典中不存在的索引导致。KeyError字典键错误,通常因为尝试访
- 【Python】已解决:ModuleNotFoundError: No module named ‘sklearn‘
屿小夏
pythonsklearn人工智能
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 使用神经网络拟合6项参数
Andrew_Xzw
神经网络人工智能深度学习开发语言机器学习python
使用神经网络拟合6项参数1.数据预处理1.1添加参数解析1.2数据预处理逻辑1.3数据归一化及划分1.4数据标签处理逻辑1.5数据转torch2.定义model2.1CNN_LSTM2.2Transformer3.定义train脚本3.1loss和optimizer3.2train3.3predict1.数据预处理1.1添加参数解析为了方便管理模型和训练等参数,统一用参数解析。defparse_a
- 如何快速在Windows 10 + Anaconda 3 中使用Mxnet及gluon
qianchess
mxnet使用mxnetwin10anacondagluon人工智能
如何快速在Windows10+Anaconda3中使用Mxnet及gluon网络上Mxnet的安装以及使用方法很多,自从其作者之一李沐推出了基于Mxnet的深度学习课程之后,我也尝试着去使用了一下Mxnet。首先第一步就是在自己的系统中安装Mxnet及其相关组建。现在的Mxnet常常会跟其虚拟环境Gluon结合在一起,所以下文就一起阐述一下,顺便记录一下自己踩的坑。注意本文的大部分内容都可以在官网
- 3D UNet和Swin-UNETR
学無芷境
计算机视觉
3DUNet和Swin-UNETR都是用于医学图像分析的深度学习网络,它们对三维(3D)数据进行特征提取和分割。3DUNet3DUNet是UNet架构的一个变体,专门设计用于处理三维医学图像数据。UNet最初是为二维(2D)图像分割任务设计的,具有典型的编码器-解码器结构。3DUNet扩展了这种架构,以便更好地处理具有深度信息的体积数据,如CT或MRI扫描。主要特点:编码器:逐渐下采样图像,提取并
- 3DUnetCNN 项目常见问题解决方案
魏纯漫
3DUnetCNN项目常见问题解决方案3DUnetCNNPytorch3DU-NetConvolutionNeuralNetwork(CNN)designedformedicalimagesegmentation项目地址:https://gitcode.com/gh_mirrors/3d/3DUnetCNN项目基础介绍3DUnetCNN是一个基于PyTorch的3DU-Net卷积神经网络(CNN)
- 推荐3D UNet实现:深度学习3D体素数据语义分割的利器!
滑辰煦Marc
推荐3DUNet实现:深度学习3D体素数据语义分割的利器!去发现同类优质开源项目:https://gitcode.com/在这个快速发展的深度学习时代,3DUNet已经成为3D图像处理领域中不可或缺的工具,尤其在医疗影像分析和3D物体识别等任务上展现出强大的潜力。这个开源项目为我们提供了一个高效、灵活的3DUNet实现,支持Tensorflow、PyTorch和Chainer三种主流深度学习框架。
- Python基础03(循环与选择结构)
XYX的Blog
Pythonpython数据结构开发语言
Python循环与选择结构1.条件表达式绝大部分合法的Python表达式都可以作为条件表达式。在python中除了False,0,0.0,0j,None,空列表,空元组,空集合,空字典,空字符串,空range对象,其余的都与True等价函数,生成器对象都等价于True2.选择结构Python的分支控制语句,即根据表达式的判断结果,为True还是为False,选择运行程序的其中一个分支。Python
- 机器学习数据预处理preprocessing之KernelCenterer
一叶_障目
机器学习人工智能
sklearn.preprocessing.KernelCenterer对矩阵XXX执行中心化操作,即使得核矩阵的行和列的均值为零给定二维矩阵XXX,可以下式得到其核变换矩阵KKK:K(X,X)=ϕ(X).ϕ(X)TK(X,X)=\phi(X).\phi(X)^TK(X,X)=ϕ(X).ϕ(X)T式中ϕ(X)\phi(X)ϕ(X)是一种将XXX从原始空间映射到希尔伯特空间的函数希尔伯特空间是一种完
- 锐捷路由器网关RG-NBR6135-E和锐捷交换机 Ruijie Reyee RG-ES224GC 电脑登录web方法
zh7314
硬件工程
2025年1月17日22:29:35最近淘了点东西,准备在家里搞一套深度学习的服务器,先把网关和交换机搞到了锐捷路由器网关RG-NBR6135-E电脑登录web方法在拿到机器的时候,如果不是全新建议拿根牙签,差入reset5-10秒,灯光会全部闪几下,重置机器,因为有些机器会配置的ip和网段无法访问默认的web服务ip,在机器上面的默认配置单配置参考:https://baijiahao.baidu
- PyTorch机器学习与深度学习技术方法
Teacher.chenchong
机器学习python开发语言
近年来,随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术,在许多行业都取得了颠覆性的成果。另外,近年来,Pytorch深度学习框架受到越来越多科研人员的关注和喜爱。Python基础知识串讲1、Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之HelloW
- 深度学习模块C2f代码详解
你是狒狒吗
目标检测人工智能计算机视觉pytorchYOLO神经网络
C2f是一个用于构建卷积神经网络(CNN)的模块,特别是在YOLOv5和YOLOv8等目标检测模型中。这个模块是一个改进的CSP(CrossStagePartial)Bottleneck结构,旨在提高计算效率和特征提取能力。下面是对C2f类的详细解释:类定义和初始化Python复制classC2f(nn.Module):“”“FasterImplementationofCSPBottleneckw
- 华为 Ascend 平台 YOLOv5 目标检测推理教程
Lunar*
目标检测华为YOLO目标检测
1.背景介绍随着人工智能技术的快速发展,目标检测在智能安防、自动驾驶、工业检测等领域中扮演了重要角色。YOLOv5是一种高效的目标检测模型,凭借其速度和精度的平衡广受欢迎。华为Ascend推理框架(ACL)是AscendCANN软件栈的核心组件,专为AscendAI加速硬件(如Atlas300I)设计,可实现高性能的深度学习推理。在本文中,我们将介绍如何基于华为AscendACL推理框架对YOLO
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象