#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include
#include
#include
//#include "/usr/include/opencv4/opencv2/opencv.hpp"
#include
using namespace std;
using namespace cv;
//腐蚀
__global__ void erodeInCuda(unsigned char *dataIn, unsigned char *dataOut, Size erodeElement, int imgWidth, int imgHeight)
{
//Grid中x方向上的索引
int xIndex = threadIdx.x + blockIdx.x * blockDim.x;
//Grid中y方向上的索引
int yIndex = threadIdx.y + blockIdx.y * blockDim.y;
int elementWidth = erodeElement.width;
int elementHeight = erodeElement.height;
int halfEW = elementWidth / 2;
int halfEH = elementHeight / 2;
//初始化输出图
dataOut[yIndex * imgWidth + xIndex] = dataIn[yIndex * imgWidth + xIndex];;
//防止越界
if (xIndex > halfEW && xIndex < imgWidth - halfEW && yIndex > halfEH && yIndex < imgHeight - halfEH)
{
for (int i = -halfEH; i < halfEH + 1; i++)
{
for (int j = -halfEW; j < halfEW + 1; j++)
{
if (dataIn[(i + yIndex) * imgWidth + xIndex + j] < dataOut[yIndex * imgWidth + xIndex])
{
dataOut[yIndex * imgWidth + xIndex] = dataIn[(i + yIndex) * imgWidth + xIndex + j];
}
}
}
}
}
//膨胀
__global__ void dilateInCuda(unsigned char *dataIn, unsigned char *dataOut, Size dilateElement, int imgWidth, int imgHeight)
{
//Grid中x方向上的索引
int xIndex = threadIdx.x + blockIdx.x * blockDim.x;
//Grid中y方向上的索引
int yIndex = threadIdx.y + blockIdx.y * blockDim.y;
int elementWidth = dilateElement.width;
int elementHeight = dilateElement.height;
int halfEW = elementWidth / 2;
int halfEH = elementHeight / 2;
//初始化输出图
dataOut[yIndex * imgWidth + xIndex] = dataIn[yIndex * imgWidth + xIndex];;
//防止越界
if (xIndex > halfEW && xIndex < imgWidth - halfEW && yIndex > halfEH && yIndex < imgHeight - halfEH)
{
for (int i = -halfEH; i < halfEH + 1; i++)
{
for (int j = -halfEW; j < halfEW + 1; j++)
{
if (dataIn[(i + yIndex) * imgWidth + xIndex + j] > dataOut[yIndex * imgWidth + xIndex])
{
dataOut[yIndex * imgWidth + xIndex] = dataIn[(i + yIndex) * imgWidth + xIndex + j];
}
}
}
}
}
int main()
{
Mat srcImg = imread("1.jpg");//输入图片
Mat grayImg = imread("1.jpg", 0);//输入的灰度图
cv::namedWindow("srcImg", 0);
cv::imshow("srcImg", srcImg);
cv::waitKey(1000);
cv::namedWindow("grayImg", 0);
cv::imshow("grayImg", grayImg);
cv::waitKey(1000);
unsigned char *d_in;//输入图片在GPU内的内存
unsigned char *d_out1;//腐蚀后输出图片在GPU内的内存
unsigned char *d_out2;//膨胀后输出图片在GPU内的内存
int imgWidth = grayImg.cols;
int imgHeight = grayImg.rows;
Mat dstImg1(imgHeight, imgWidth, CV_8UC1, Scalar(0));//腐蚀后输出图片在CPU内的内存
Mat dstImg2(imgHeight, imgWidth, CV_8UC1, Scalar(0));//膨胀后输出图片在CPU内的内存
//在GPU中开辟内存
cudaMalloc((void**)&d_in, imgWidth * imgHeight * sizeof(unsigned char));
cudaMalloc((void**)&d_out1, imgWidth * imgHeight * sizeof(unsigned char));
cudaMalloc((void**)&d_out2, imgWidth * imgHeight * sizeof(unsigned char));
//将输入图片传入GPU
cudaMemcpy(d_in, grayImg.data, imgWidth * imgHeight * sizeof(unsigned char), cudaMemcpyHostToDevice);
//定义block中thread的分布
dim3 threadsPerBlock(32, 32);
//根据输入图片的宽高定义block的大小
dim3 blocksPerGrid((imgWidth + threadsPerBlock.x - 1) / threadsPerBlock.x, (imgHeight + threadsPerBlock.y - 1) / threadsPerBlock.y);
//算子大小
Size Element(3, 5);
//CUDA腐蚀
erodeInCuda << <blocksPerGrid, threadsPerBlock >> >(d_in, d_out1, Element, imgWidth, imgHeight);
//将结果传回CPU
cudaMemcpy(dstImg1.data, d_out1, imgWidth * imgHeight * sizeof(unsigned char), cudaMemcpyDeviceToHost);
//CPU内腐蚀(OpenCV实现)
Mat erodeImg;
Mat element = getStructuringElement(MORPH_RECT, Size(3, 5));
erode(grayImg, erodeImg, element);
//CUDA膨胀
dilateInCuda << <blocksPerGrid, threadsPerBlock >> >(d_in, d_out2, Element, imgWidth, imgHeight);
//将结果传回CPU
cudaMemcpy(dstImg2.data, d_out2, imgWidth * imgHeight * sizeof(unsigned char), cudaMemcpyDeviceToHost);
//CPU内膨胀(OpenCV实现)
Mat dilateImg;
dilate(grayImg, dilateImg, element);
cv::namedWindow("dilateImg11111", 0);
cv::imshow("dilateImg11111", dilateImg);
cv::waitKey(1000);
cv::waitKey(0);
return 0;
}
nvcc `pkg-config opencv4 --cflags --libs` test5.cu -o test5
#或者
nvcc `pkg-config --libs opencv4` -L. -L/usr/local/cuda/lib -lcuda -lcudart `pkg-config --cflags opencv4` -I. -I/usr/local/cuda/include test5.cu -o test5
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include
#include
#include
#include
//#include "/usr/include/opencv4/opencv2/opencv.hpp"
#include
using namespace std;
using namespace cv;
//腐蚀
__global__ void erodeInCuda(unsigned char *dataIn, unsigned char *dataOut, Size erodeElement, int imgWidth, int imgHeight)
{
//Grid中x方向上的索引
int xIndex = threadIdx.x + blockIdx.x * blockDim.x;
//Grid中y方向上的索引
int yIndex = threadIdx.y + blockIdx.y * blockDim.y;
int elementWidth = erodeElement.width;
int elementHeight = erodeElement.height;
int halfEW = elementWidth / 2;
int halfEH = elementHeight / 2;
//初始化输出图
dataOut[yIndex * imgWidth + xIndex] = dataIn[yIndex * imgWidth + xIndex];;
//防止越界
if (xIndex > halfEW && xIndex < imgWidth - halfEW && yIndex > halfEH && yIndex < imgHeight - halfEH)
{
for (int i = -halfEH; i < halfEH + 1; i++)
{
for (int j = -halfEW; j < halfEW + 1; j++)
{
if (dataIn[(i + yIndex) * imgWidth + xIndex + j] < dataOut[yIndex * imgWidth + xIndex])
{
dataOut[yIndex * imgWidth + xIndex] = dataIn[(i + yIndex) * imgWidth + xIndex + j];
}
}
}
}
}
//膨胀
__global__ void dilateInCuda(unsigned char *dataIn, unsigned char *dataOut, Size dilateElement, int imgWidth, int imgHeight)
{
//Grid中x方向上的索引
int xIndex = threadIdx.x + blockIdx.x * blockDim.x;
//Grid中y方向上的索引
int yIndex = threadIdx.y + blockIdx.y * blockDim.y;
int elementWidth = dilateElement.width;
int elementHeight = dilateElement.height;
int halfEW = elementWidth / 2;
int halfEH = elementHeight / 2;
//初始化输出图
dataOut[yIndex * imgWidth + xIndex] = dataIn[yIndex * imgWidth + xIndex];;
//防止越界
if (xIndex > halfEW && xIndex < imgWidth - halfEW && yIndex > halfEH && yIndex < imgHeight - halfEH)
{
for (int i = -halfEH; i < halfEH + 1; i++)
{
for (int j = -halfEW; j < halfEW + 1; j++)
{
if (dataIn[(i + yIndex) * imgWidth + xIndex + j] > dataOut[yIndex * imgWidth + xIndex])
{
dataOut[yIndex * imgWidth + xIndex] = dataIn[(i + yIndex) * imgWidth + xIndex + j];
}
}
}
}
}
int main()
{
Mat srcImg = imread("1.jpg");//输入图片
Mat grayImg = imread("1.jpg", 0);//输入的灰度图
cv::namedWindow("srcImg", 0);
cv::imshow("srcImg", srcImg);
cv::waitKey(1000);
cv::namedWindow("grayImg", 0);
cv::imshow("grayImg", grayImg);
cv::waitKey(1000);
unsigned char *d_in;//输入图片在GPU内的内存
unsigned char *d_out1;//腐蚀后输出图片在GPU内的内存
unsigned char *d_out2;//膨胀后输出图片在GPU内的内存
int imgWidth = grayImg.cols;
int imgHeight = grayImg.rows;
Mat dstImg1(imgHeight, imgWidth, CV_8UC1, Scalar(0));//腐蚀后输出图片在CPU内的内存
Mat dstImg2(imgHeight, imgWidth, CV_8UC1, Scalar(0));//膨胀后输出图片在CPU内的内存
const clock_t time_1 = clock();
//在GPU中开辟内存
cudaMalloc((void**)&d_in, imgWidth * imgHeight * sizeof(unsigned char));
cudaMalloc((void**)&d_out1, imgWidth * imgHeight * sizeof(unsigned char));
cudaMalloc((void**)&d_out2, imgWidth * imgHeight * sizeof(unsigned char));
//将输入图片传入GPU
cudaMemcpy(d_in, grayImg.data, imgWidth * imgHeight * sizeof(unsigned char), cudaMemcpyHostToDevice);
//定义block中thread的分布
dim3 threadsPerBlock(32, 32);
//根据输入图片的宽高定义block的大小
dim3 blocksPerGrid((imgWidth + threadsPerBlock.x - 1) / threadsPerBlock.x, (imgHeight + threadsPerBlock.y - 1) / threadsPerBlock.y);
//算子大小
Size Element(3, 5);
//CUDA腐蚀
const clock_t time_5 = clock();
erodeInCuda << <blocksPerGrid, threadsPerBlock >> >(d_in, d_out1, Element, imgWidth, imgHeight);
const clock_t time_6 = clock();
float diff_3 =(double)( time_6 - time_5 )/1000.0;
printf("\n\n[ALG][%s][%4d]diff_3 = %f ms \n",__FUNCTION__, __LINE__, diff_3);
//将结果传回CPU
cudaMemcpy(dstImg1.data, d_out1, imgWidth * imgHeight * sizeof(unsigned char), cudaMemcpyDeviceToHost);
const clock_t time_2 = clock();
float diff_1 = (double)(time_2 - time_1 )/1000.0;
printf("\n\n[ALG][%s][%4d]diff_1 = %f ms\n",__FUNCTION__, __LINE__, diff_1);
//CPU内腐蚀(OpenCV实现)
const clock_t time_3 = clock();
Mat erodeImg;
Mat element = getStructuringElement(MORPH_RECT, Size(3, 5));
erode(grayImg, erodeImg, element);
const clock_t time_4 = clock();
float diff_2 =(double)( time_4 - time_3 )/1000.0;
printf("\n\n[ALG][%s][%4d]diff_2 = %f ms \n",__FUNCTION__, __LINE__, diff_2);
//CUDA膨胀
dilateInCuda << <blocksPerGrid, threadsPerBlock >> >(d_in, d_out2, Element, imgWidth, imgHeight);
//将结果传回CPU
cudaMemcpy(dstImg2.data, d_out2, imgWidth * imgHeight * sizeof(unsigned char), cudaMemcpyDeviceToHost);
//CPU内膨胀(OpenCV实现)
Mat dilateImg;
dilate(grayImg, dilateImg, element);
imwrite("dilateImg_230117.jpg", dilateImg);
cv::namedWindow("dilateImg11111", 0);
cv::imshow("dilateImg11111", dilateImg);
cv::waitKey(1000);
cv::waitKey(0);
return 0;
}
参考:https://blog.csdn.net/MGotze/article/details/76448702