机器学习——Logistics回归

Logistics回归:极大似然法

对数几率

机器学习——Logistics回归_第1张图片

因此有:

机器学习——Logistics回归_第2张图片 

Logisitics回归:极大似然法估计recap

确定待求解的未知参数θ1,θ2,……θn,如均值,方差或特定分布函数等

计算每个样本X1 , X2 , . . . , Xn的概率密度 f(Xi; θ1 , . . . , θm).

假定样本i.i.d,则可根据样本的概率密度累乘构造似然函数:

机器学习——Logistics回归_第3张图片

通过似然函数最大化(求导为零),求解未知参数 θ

为降低计算难度,通常可采用对数加法替换概率乘法,通 过导数为零/极大值来求解未知参数

UCI Machine Learning Repository: Breast Cancer Wisconsin (Original) Data Set

数据库借用的康威斯星州乳腺癌的数据集

我将其中的10与8改成了0,增加数据集数据错误率

1.改进的随机梯度上升算法

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   #initialize to all ones
    for j in range(numIter):
        dataIndex = range(m)
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.0001    #apha decreases with iteration, does not 
            randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights

def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5: return 1.0
    else: return 0.0

def colicTest():
    frTrain = open('breast-cancer-wisconsin.txt'); frTest = open('breast-cancer-wisconsin-train.txt')
    trainingSet = []; trainingLabels = []
    for line in frTrain.readlines():
        currLine = line.strip().split(',')
        lineArr =[]
        for i in range(10):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[10]))
    trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)
    errorCount = 0; numTestVec = 0.0
    for line in frTest.readlines():
        numTestVec += 1.0
        currLine = line.strip().split(',')
        lineArr =[]
        for i in range(10):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[10]):
            errorCount += 1
    errorRate = (float(errorCount)/numTestVec)
    print "the error rate of this test is: %f" % errorRate
    return errorRate

def multiTest():
    numTests = 10; errorSum=0.0
    for k in range(numTests):
        errorSum += colicTest()
    print "after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))

输出结果为

机器学习——Logistics回归_第4张图片

0(即未收集数据)占总数据的百分比约为13%,而利用改进的随机梯度算法错误率仅仅20%,可以说效率非常高

2.随机梯度上升算法

def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)   #initialize to all ones
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

利用此算法计算的错误率结果为

机器学习——Logistics回归_第5张图片

可以看出相比改进的随机梯度上升算法来看,错误率明显提高不少

所以改进的随机梯度上升算法更好

你可能感兴趣的:(算法,机器学习,c++)