神经网络训练的一般步骤,神经网络的训练与测试

深度神经网络是如何训练的?

Coursera的Ng机器学习,UFLDL都看过。没记错的话Ng的机器学习里是直接给出公式了,虽然你可能知道如何求解,但是即使不知道完成作业也不是问题,只要照着公式写就行。

反正我当时看的时候心里并没能比较清楚的明白。我觉得想了解深度学习UFLDL教程-Ufldl是不错的。有习题,做完的话确实会对深度学习有更加深刻的理解,但是总还不是很清晰。

后来看了LiFeiFei的StanfordUniversityCS231n:ConvolutionalNeuralNetworksforVisualRecognition,我的感觉是对CNN的理解有了很大的提升。

沉下心来推推公式,多思考,明白了反向传播本质上是链式法则(虽然之前也知道,但是当时还是理解的迷迷糊糊的)。所有的梯度其实都是对最终的loss进行求导得到的,也就是标量对矩阵or向量的求导。

当然同时也学到了许多其他的关于cnn的。并且建议你不仅要完成练习,最好能自己也写一个cnn,这个过程可能会让你学习到许多更加细节和可能忽略的东西。

这样的网络可以使用中间层构建出多层的抽象,正如我们在布尔线路中做的那样。

例如,如果我们在进行视觉模式识别,那么在第一层的神经元可能学会识别边,在第二层的神经元可以在边的基础上学会识别出更加复杂的形状,例如三角形或者矩形。第三层将能够识别更加复杂的形状。依此类推。

这些多层的抽象看起来能够赋予深度网络一种学习解决复杂模式识别问题的能力。然后,正如线路的示例中看到的那样,存在着理论上的研究结果告诉我们深度网络在本质上比浅层网络更加强大。

谷歌人工智能写作项目:神经网络伪原创

为什么要对训练好的神经网络进行测试?目的是什么?测试和训练过程区别是什么?

关于卷积神经网络的训练样本及测试样本

(vc/c++)bp神经网络训练好后,如何用新数据进行测试?

BP网的工作原理是我们拿一批训练数据(输入样本和期望输出)训练出一个学习到这些样本特征的神经网络,你可以理解为是具有那些权值的神经网络,然后我们拿新的样本过来,若你需要的是去检测这个神经网络,那么要给的新样本必须没包含在训练样本中,而且也必须有输入和期望输出。

已经学习好的神经网络(即已经训练好的网络)你给它新的输入,它运行之后给你的输出,就是你的预测。

如何训练深度神经网络

deeplearinig就是神经网络的一类,就是解决的训练问题的深层神经网络,所以你这问题“深度学习会代替神经网络‘就不对,BP么,BP有自己的优势,也是很成熟的算法,做手写识别等等效果已经商用化了,不会被轻易替代。

deeplearning远比BP要复杂,用来解决的问题也不是一个层面,所以也没有替代的必要。Deeplearning所涉及的问题大多数BP都没法解决的。度学习的概念源于人工神经网络的研究。

含多隐层的多层感知器就是一种深度学习结构,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出,基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

系统地论述了神经网络的基本原理、方法、技术和应用,主要内容包括:神经信息处理的基本原理、感知器、反向传播网络、自组织网络、递归网络、径向基函数网络、核函数方法、神经网络集成、模糊神经网络、概率神经网络、脉冲耦合神经网络、神经场理论、神经元集群以及神经计算机。

每章末附有习题,书末附有详细的参考文献。神经网络是通过对人脑或生物神经网络的抽象和建模,研究非程序的、适应性的、大脑风格的信息处理的本质和能力。

它以脑科学和认知神经科学的研究成果为基础,拓展智能信息处理的方法,为解决复杂问题和智能控制提供有效的途径,是智能科学和计算智能的重要部分。

 

你可能感兴趣的:(神经网络,神经网络,深度学习,机器学习,dnn)