神经网络一般训练多少次,神经网络训练时间多长

用MATLAB与BP神经网络法处理15组数据,共60个数据,需要多长时间

训练时长取决于训练算法、训练目标、样本数量和网络规模。你的样本只有15组,数量较少,一般几秒钟就能训练完成。

若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。

但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。

人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。

谷歌人工智能写作项目:神经网络伪原创

一般神经网络要训练多久

卷积神经网络训练mnist时间多久

matlab training neural network大概需要多久

tensorflow 训练一个神经网络 需要多长时间

基本使用使用TensorFlow,你必须明白TensorFlow:使用图(graph)来表示计算任务.在被称之为会话(Session)的上下文(context)中执行图.使用tensor表示数据.通过变量(Variable)维护状态.使用feed和fetch可以为任意的操作(arbitraryoperation)赋值或者从其中获取数据.综述TensorFlow是一个编程系统,使用图来表示计算任务.图中的节点被称之为op(operation的缩写).一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor.每个Tensor是一个类型化的多维数组.例如,你可以将一小组图像集表示为一个四维浮点数数组,这四个维度分别是[batch,height,width,channels].一个TensorFlow图描述了计算的过程.为了进行计算,图必须在会话里被启动.会话将图的op分发到诸如CPU或GPU之类的设备上,同时提供执行op的方法.这些方法执行后,将产生的tensor返回.在Python语言中,返回的tensor是numpyndarray对象;在C和C++语言中,返回的tensor是tensorflow::Tensor实例.计算图TensorFlow程序通常被组织成一个构建阶段和一个执行阶段.在构建阶段,op的执行步骤被描述成一个图.在执行阶段,使用会话执行执行图中的op.例如,通常在构建阶段创建一个图来表示和训练神经网络,然后在执行阶段反复执行图中的训练op.TensorFlow支持C,C++,Python编程语言.目前,TensorFlow的Python库更加易用,它提供了大量的辅助函数来简化构建图的工作,这些函数尚未被C和C++库支持.三种语言的会话库(sessionlibraries)是一致的.构建图构建图的第一步,是创建源op(sourceop).源op不需要任何输入,例如常量(Constant).源op的输出被传递给其它op做运算.Python库中,op构造器的返回值代表被构造出的op的输出,这些返回值可以传递给其它op构造器作为输入.TensorFlowPython库有一个默认图(defaultgraph),op构造器可以为其增加节点.这个默认图对许多程序来说已经足够用了.阅读Graph类文档来了解如何管理多个图.importtensorflowastf#创建一个常量op,产生一个1x2矩阵.这个op被作为一个节点#加到默认图中.##构造器的返回值代表该常量op的返回值.matrix1=tf.constant([[3.,3.]])#创建另外一个常量op,产生一个2x1矩阵.matrix2=tf.constant([[2.],[2.]])#创建一个矩阵乘法matmulop,把'matrix1'和'matrix2'作为输入.#返回值'product'代表矩阵乘法的结果.product=tf.matmul(matrix1,matrix2)默认图现在有三个节点,两个constant()op,和一个matmul()op.为了真正进行矩阵相乘运算,并得到矩阵乘法的结果,你必须在会话里启动这个图.在一个会话中启动图构造阶段完成后,才能启动图.启动图的第一步是创建一个Session对象,如果无任何创建参数,会话构造器将启动默认图.欲了解完整的会话API,请阅读Session类.#启动默认图.sess=tf.Session()#调用sess的'run()'方法来执行矩阵乘法op,传入'product'作为该方法的参数.#上面提到,'product'代表了矩阵乘法op的输出,传入它是向方法表明,我们希望取回#矩阵乘法op的输出.##整个执行过程是自动化的,会话负责传递op所需的全部输入.op通常是并发执行的.##函数调用'run(product)'触发了图中三个op(两个常量op和一个矩阵乘法op)的执行.##返回值'result'是一个numpy`ndarray`对象.result=(product)printresult#==>[[12.]]#任务完成,关闭会话.sess.close()Session对象在使用完后需要关闭以释放资源.除了显式调用close外,也可以使用"with"代码块来自动完成关闭动作.withtf.Session()assess:result=([product])printresult在实现上,TensorFlow将图形定义转换成分布式执行的操作,以充分利用可用的计算资源(如CPU或GPU).一般你不需要显式指定使用CPU还是GPU,TensorFlow能自动检测.如果检测到GPU,TensorFlow会尽可能地利用找到的第一个GPU来执行操作.如果机器上有超过一个可用的GPU,除第一个外的其它GPU默认是不参与计算的.为了让TensorFlow使用这些GPU,你必须将op明确指派给它们执行.with...Device语句用来指派特定的CPU或GPU执行操作:withtf.Session()assess:withtf.device("/gpu:1"):matrix1=tf.constant([[3.,3.]])matrix2=tf.constant([[2.],[2.]])product=tf.matmul(matrix1,matrix2)...设备用字符串进行标识.目前支持的设备包括:"/cpu:0":机器的CPU."/gpu:0":机器的第一个GPU,如果有的话."/gpu:1":机器的第二个GPU,以此类推.阅读使用GPU章节,了解TensorFlowGPU使用的更多信息.交互式使用文档中的Python示例使用一个会话Session来启动图,并调用()方法执行操作.为了便于使用诸如IPython之类的Python交互环境,可以使用InteractiveSession代替Session类,使用()和()方法代替().这样可以避免使用一个变量来持有会话.#进入一个交互式TensorFlow会话.importtensorflowastfsess=tf.InteractiveSession()x=tf.Variable([1.0,2.0])a=tf.constant([3.0,3.0])#使用初始化器initializerop的run()方法初始化'x'()#增加一个减法subop,从'x'减去'a'.运行减法op,输出结果sub=(x,a)print()#==>[-2.-1.]TensorTensorFlow程序使用tensor数据结构来代表所有的数据,计算图中,操作间传递的数据都是tensor.你可以把TensorFlowtensor看作是一个n维的数组或列表.一个tensor包含一个静态类型rank,和一个shape.想了解TensorFlow是如何处理这些概念的,参见Rank,Shape,和Type.变量Variablesformoredetails.变量维护图执行过程中的状态信息.下面的例子演示了如何使用变量实现一个简单的计数器.参见变量章节了解更多细节.#创建一个变量,初始化为标量0.state=tf.Variable(0,name="counter")#创建一个op,其作用是使state增加1one=tf.constant(1)new_value=(state,one)update=tf.assign(state,new_value)#启动图后,变量必须先经过`初始化`(init)op初始化,#首先必须增加一个`初始化`op到图中.init_op=tf.initialize_all_variables()#启动图,运行opwithtf.Session()assess:#运行'init'op(init_op)#打印'state'的初始值print(state)#运行op,更新'state',并打印'state'for_inrange(3):(update)print(state)#输出:#0#1#2#3代码中assign()操作是图所描绘的表达式的一部分,正如add()操作一样.所以在调用run()执行表达式之前,它并不会真正执行赋值操作.通常会将一个统计模型中的参数表示为一组变量.例如,你可以将一个神经网络的权重作为某个变量存储在一个tensor中.在训练过程中,通过重复运行训练图,更新这个tensor.Fetch为了取回操作的输出内容,可以在使用Session对象的run()调用执行图时,传入一些tensor,这些tensor会帮助你取回结果.在之前的例子里,我们只取回了单个节点state,但是你也可以取回多个tensor:input1=tf.constant(3.0)input2=tf.constant(2.0)input3=tf.constant(5.0)intermed=(input2,input3)mul=(input1,intermed)withtf.Session()assess:result=([mul,intermed])printresult#输出:#[array([21.],dtype=float32),array([7.],dtype=float32)]需要获取的多个tensor值,在op的一次运行中一起获得(而不是逐个去获取tensor)。

Feed上述示例在计算图中引入了tensor,以常量或变量的形式存储.TensorFlow还提供了feed机制,该机制可以临时替代图中的任意操作中的tensor可以对图中任何操作提交补丁,直接插入一个tensor.feed使用一个tensor值临时替换一个操作的输出结果.你可以提供feed数据作为run()调用的参数.feed只在调用它的方法内有效,方法结束,feed就会消失.最常见的用例是将某些特殊的操作指定为"feed"操作,标记的方法是使用tf.placeholder()为这些操作创建占位符.input1=tf.placeholder(tf.float32)input2=tf.placeholder(tf.float32)output=(input1,input2)withtf.Session()assess:print([output],feed_dict={input1:[7.],input2:[2.]})#输出:#[array([14.],dtype=float32)]foralarger-scaleexampleoffeeds.如果没有正确提供feed,placeholder()操作将会产生错误.MNIST全连通feed教程(sourcecode)给出了一个更大规模的使用feed的例子.。

人工神经网络一般用于预测多少年的数据

这个要视处理的问题而定,训练网络的样本是基于多少年的数据,相应预测的就是多少年的数据。

例如电力负荷预测,当进行的是短期负荷预测时,输入的样本为最近几日的负荷数据,那么预测的自然是最近几日的,不可能再长。

而进行长期负荷预测时,训练样本是以年为单位的负荷数据,就可以预测几年甚至数十年的负荷。再例如,进行人口增长预测,则一般是以多年预测为基础的。

请问一下,无基础学习卷积神经网络需要多久?

卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。

2、基于卷积网络的人脸检测卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。

它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。

3、文字识别系统在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。

然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。

matlab神经网络训练一般需要多少数据?

哪处理60个数据用多长时间,Matlab与BP神经网络法结合

比较新的版本,比如说matlab2010以上的,都不需要装神经网络的工具箱建立网络步骤:1、数据归一化:输入的数据通常为P,输出数据通常为T,数据格式为:每列对应一个样本,归一化常用函数:mapminmax[pn,ps]=mapminmax(p);[tn,ts]=mapminmax(t)pn,tn是归一化后的数据,ps,ts是归一化的结构体,在后面反归一化预测值很有用。

2、建立网络并设定参数net=newff(pn,tn,[])中括号里面的是输入层数,隐含神经元数,输出层数,还可以设定节点传递函数等等的参数net.trainparam.epochs=1000训练的次数=0.0001训练的误差目标值=0.1学习速率,通常在0到1之间,过大过小都不好3、预测并分析an=sim(net,pn)ouput=mapminmax('reverse',an,ts)根据之前归一化的标准,对预测结果进行反归一化,得到结果error=output-t这里是对误差进行输出,也可以用error=sum(asb(output-t))当然也可以作图,比如说:plot(p,t,'-o')holdonplot(p,output,'-*')看预测值和真实值能否吻合还可以在神经网络训练完成后的对话框中看MSE和R方还有很多方法提高神经网络的精度,以上程序没有经过MATLAB调试,但大致过程如上。

 

你可能感兴趣的:(物联网,神经网络,深度学习,tensorflow)