pytorch实现DNN-例子

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets,transforms
from torch.autograd import Variable

#training setting
batch_size = 16
# MNIST Dataset
train_dataset = datasets.MNIST(root='./mnist_data/',
                               train = True ,
                               transform = transforms.ToTensor(),
                               download=True)

test_dataset = datasets.MNIST(root='./mnist_data/',
                              train=False,
                              transform=transforms.ToTensor())

# Data Loader (Input Pipeline)

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                           batch_size=batch_size,
                                           shuffle=False)

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.l1 = nn.Linear(784,520)
        self.l2 = nn.Linear(520, 320)
        self.l3 = nn.Linear(320, 240)
        self.l4 = nn.Linear(240, 120)
        self.l5 = nn.Linear(120, 10)

    def forward(self, x):
        x = x.view(-1,784) # Flattern the (n,1,28,28) to (n,784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))

        return self.l5(x)
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr= 0.01 , momentum= 0.5)

def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        print(len(train_loader))
        data,target = Variable(data), Variable(target)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output,target)
        loss.backward()
        optimizer.step()
        if batch_idx % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))


def test():
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data, target = Variable(data,volatile=True),Variable(target)
        output = model(data)
        # sum up batch loss
        test_loss += criterion(output, target).data.item()
        # get the index of the max
        pred = output.data.max(1, keepdim=True)[1]
        correct += pred.eq(target.data.view_as(pred)).cpu().sum()
    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

for epoch in range(1, 10):
    train(epoch)
    test()

你可能感兴趣的:(pytorch,深度学习)