所谓的多分类问题,实际上是使用了softmax函数,这一点和tensorflow是有区别的。tensorflow中的softmax和交叉熵函数是分开的,而pytorch是合并到一起的。
对mnist数据集使用多分类,代码如下:
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
# prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差
train_dataset = datasets.MNIST(root='E:\\tmp\\pytorch/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='E:\\tmp\\pytorch/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = torch.nn.Linear(784, 512)
self.l2 = torch.nn.Linear(512, 256)
self.l3 = torch.nn.Linear(256, 128)
self.l4 = torch.nn.Linear(128, 64)
self.l5 = torch.nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 784) # -1其实就是自动获取mini_batch
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x) # 最后一层不做激活,不进行非线性变换
model = Net()
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# training cycle forward, backward, update
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
# 获得一个批次的数据和标签
inputs, target = data
optimizer.zero_grad()
# 获得模型预测结果(64, 10)
outputs = model(inputs)
# 交叉熵代价函数outputs(64,10),target(64)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1) # dim = 1 列是第0个维度,行是第1个维度
total += labels.size(0)
correct += (predicted == labels).sum().item() # 张量之间的比较运算
print('accuracy on test set: %d %% ' % (100*correct/total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
结果如下:
[1, 300] loss: 2.186
[1, 600] loss: 0.881
[1, 900] loss: 0.435
accuracy on test set: 89 %
[2, 300] loss: 0.323
[2, 600] loss: 0.262
[2, 900] loss: 0.225
accuracy on test set: 94 %
[3, 300] loss: 0.187
[3, 600] loss: 0.171
[3, 900] loss: 0.152
accuracy on test set: 95 %
[4, 300] loss: 0.127
[4, 600] loss: 0.127
[4, 900] loss: 0.110
accuracy on test set: 96 %
[5, 300] loss: 0.097
[5, 600] loss: 0.096
[5, 900] loss: 0.092
accuracy on test set: 96 %
[6, 300] loss: 0.080
[6, 600] loss: 0.074
[6, 900] loss: 0.073
accuracy on test set: 97 %
[7, 300] loss: 0.062
[7, 600] loss: 0.059
[7, 900] loss: 0.062
accuracy on test set: 97 %
[8, 300] loss: 0.052
[8, 600] loss: 0.048
[8, 900] loss: 0.048
accuracy on test set: 97 %
[9, 300] loss: 0.039
[9, 600] loss: 0.042
[9, 900] loss: 0.038
accuracy on test set: 96 %
[10, 300] loss: 0.034
[10, 600] loss: 0.032
[10, 900] loss: 0.033
accuracy on test set: 97 %
努力加油a啊