【学习资源】理解数学和热爱数学

目录

1. 在科学和工程实践中运用数学和计算思维

2. 人工智能里的数学

3. 用ADEPT模型理解复杂的概念

4. 参考书籍

5. 数据和计算的局限之处


【学习资源】理解数学和热爱数学_第1张图片

图片来源:Memorization vs. Automaticity: Back to Basics or Beyond the Basics?

理解数学,不要记忆数学。学数学,不是为了成为985大学里,有一群自称废物的小镇做题家文中的做题家,也不是为了炫耀分数,而是在未来的科学和工程实践中,运用数学和数学的抽象建模思维,做出实实在在的贡献和影响。

关于数学,我写过以下文章

【学习资源】机器学习相关的数学参考资料_苹果二的博客-CSDN博客

今天和大家汇总我搜集的数学学习资料,希望能帮助大家理解数学,热爱数学。

1. 在科学和工程实践中运用数学和计算思维

在科学和工程实践中,如何运用数学和计算思维?

数学是一种很好的工具,具备作为科学语言之一的沟通功能和允许逻辑演绎的结构功能。数学能够以精确的形式表达思想,并能够识别关于物理世界的新思想。计算工具通过实现无法通过分析进行的计算来增强数学的力量。计算方法也是可视化表示数据的有效工具,它们可以以允许探索模式的方式显示计算或模拟的结果。尽管数学和计算思维在科学和工程学中的应用存在差异,但数学通常将这两个领域结合在一起,使工程师能够应用科学理论的数学形式,并使科学家能够使用由工程师设计的强大信息技术。 

想了解美国中小学科学教育中如何培养学生运用数学和计算思维,请听以下音频。

科学和工程实践之运用数学与计算思维1数学和计算的意义_解读美国K-12科学教育框架_免费在线阅读收听下载 - 喜马拉雅

科学和工程实践之运用数学与计算思维2学习目标_解读美国K-12科学教育框架_免费在线阅读收听下载 - 喜马拉雅

科学和工程实践之运用数学与计算思维3具体发展过程_解读美国K-12科学教育框架_免费在线阅读收听下载 - 喜马拉雅

请访问以下链接阅读报告A Framework for K-12 Science Education,可以获得详细的信息

A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas |The National Academies Press

2. 人工智能里的数学

为大家推荐一篇好文

中科院计算所沈华伟:图神经网络表达能力的回顾和前沿

沈华伟老师在上文深刻地解释了图神经网络GNN的数学本质和理论瓶颈,并且提出了三个非常好的问题:

  1. 我们有没有必要构造出这么高表达能力的图神经网络?

  2. GNN能学到结构模式吗?

  3. 能不能构造一个更强大的GNN呢?

具体内容,也可以参考沈华伟老师的演讲视频,

图神经网络在线研讨会2020丨图表示学习和图神经网络的最新理论进展和应用探索

来源:图神经网络在线研讨会2020丨图表示学习和图神经网络的最新理论进展和应用探索

特别说明,虽然微信号文章来自6月份第二届北京智源大会,而视频是3月份活动内容,但内容是一致的。

3. 用ADEPT模型理解复杂的概念

Kalid在Best Explained网站上提出了一个非常好的模型,帮助大家理解复杂的概念。

【学习资源】理解数学和热爱数学_第2张图片

Analogy 类比:这个概念像是什么已知的东西?

Diagram 可视化:把这个概念画出来是什么样子?

Example 实例:有什么身边的案例?

Plain English 大白话讲解:如何向一个小孩讲解这个概念?

Technical Definition:真正专业的定义和描述是什么样的?

参考链接:Learn Difficult Concepts with the ADEPT Method – BetterExplained

Kalid也在下文中提出为什么我们要学数学,因为数学是用于表达思想的特定且功能强大的词汇表。如果考虑新想法时,我们发现自己仍然是个笨蛋,就需要学习数学。

Why Do We Learn Math? – BetterExplained

【学习资源】理解数学和热爱数学_第3张图片

图片来源:Why Do We Learn Math? – BetterExplained 

特别推荐“简单易懂”?我们来解释隐马尔可夫模型一文,采用了以上方法来帮助读者理解隐马尔可夫HMM。

4. 参考书籍

线性代数

【学习资源】理解数学和热爱数学_第4张图片

推荐原因:

通过应用案例解释线性代数的意义和本质,请看以下有趣的例子。

  1. 如何用矩阵和方程组完成管理科学中的层次分析法,完成信息检索,实现海龟的种群统计学,解决关于网络的问题;
  2. 如何用行列式完成信息编码;
  3. 如何用向量空间分析人口迁移;
  4. 如何用线性变换实现计算机图形和动画;
  5. 如何用正交性考察信息检索,完成心理学的因素分析和要素分析?如何用最小二乘法计算小行星的轨道?如何用正交性做信号处理?
  6. 如何用特征值定位航天飞机?考察建筑物的振动?预测汽车出租情况? 搜索网页和分级网页?如何用奇异值分解处理数字图像和做心理学的要素分析?
  7. 如何用数值线性代数计算层次分析法中的权重问题?

5. 数据和计算的局限之处

数学虽然有其强大之处,也有其局限性。欢迎收听我的音频。数据或者计算不能做什么?

【学习资源】理解数学和热爱数学_第5张图片

希望大家能在学习和探索的过程中,理解数学,热爱数学,并用数学做出实实在在的贡献。

你可能感兴趣的:(学习资源,人工智能,计算思维,人工智能,神经网络,计算思维,数学,隐马尔可夫)