- Python深度学习代做目标检测NLP计算机视觉强化学习
matlabgoodboy
计算机视觉python深度学习
了解您的需求,您似乎在寻找关于Python深度学习领域的代做服务,特别是在目标检测、自然语言处理(NLP)、计算机视觉以及强化学习方面。以下是一些关于这些领域的概述以及寻找相关服务的建议。1.Python深度学习代做概述目标检测:目标检测是计算机视觉中的一个重要任务,旨在识别图像或视频中的特定对象,并确定它们的位置。Python中的深度学习框架(如TensorFlow、PyTorch)和计算机视觉
- 【深度学习】计算机视觉(CV)-目标检测-SSD(Single Shot MultiBox Detector)—— 单次检测多框检测器
IT古董
深度学习人工智能计算机视觉深度学习目标检测
SSD(SingleShotMultiBoxDetector)——单次检测多框检测器1️⃣什么是SSD?SSD(SingleShotMultiBoxDetector)是一种用于目标检测(ObjectDetection)的深度学习模型,由WeiLiu等人在2016年提出。它采用单阶段(SingleStage)方法,能够直接从图像中检测多个对象,并输出类别和边界框,比传统的两阶段方法(如FasterR
- 【深度学习】YOLO-World: Real-Time Open-Vocabulary Object Detection,目标检测
XD742971636
深度学习机器学习深度学习YOLO目标检测
介绍一个酷炫的目标检测方式:论文:https://arxiv.org/abs/2401.17270代码:https://github.com/AILab-CVC/YOLO-World文章目录摘要Introduction第2章相关工作2.1传统目标检测2.2开放词汇目标检测第3章方法3.1预训练公式:区域-文本对3.2模型架构3.3可重参数化的视觉-语言路径聚合网络(RepVL-PAN)3.4预训练
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- 基于深度学习YOLOv8的海洋动物检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython目标检测人工智能开发语言
引言近年来,计算机视觉技术在各行各业中得到了广泛的应用,特别是在智能监控、自动驾驶、医疗诊断等领域。深度学习,尤其是卷积神经网络(CNN)的出现,极大地提高了计算机处理图像和视频的能力。在这一领域,YOLO(YouOnlyLookOnce)系列模型以其高效且准确的目标检测能力,成为了当下最为流行的深度学习模型之一。在海洋生物保护、海洋环境监测等应用中,快速识别和检测海洋动物种类对于科学研究和保护工
- 基于YOLOv5深度学习的木材表面缺陷检测系统:UI界面 + YOLOv5 + 数据集详细教程
深度学习&目标检测实战项目
YOLO深度学习uiYOLOv5人工智能计算机视觉
随着工业自动化的发展,木材加工行业对产品质量的要求日益提高。木材表面缺陷的检测是确保产品质量的重要环节。传统的人工检测方式不仅费时费力,而且容易受到人为因素的影响。基于深度学习的目标检测技术,尤其是YOLOv5,凭借其优越的实时性和准确性,成为木材表面缺陷检测的有效工具。本博客将详细介绍如何构建一个基于YOLOv5的木材表面缺陷检测系统,包括数据集准备、模型训练、UI界面开发及完整代码实现。目录目
- 焦损函数(Focal Loss)与RetinaNet目标检测模型详解
人工智能
焦损函数(FocalLoss)与RetinaNet目标检测模型详解阅读时长:19分钟发布时间:2025-02-14近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】目前,精度最高的目标检测器大多基于由R-CNN推广的两阶段方法,即对稀疏的候选目标位置集应用分类器。相比之下,在规则、密集的可
- 【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
机器学习司猫白
深度学习人工智能resnet神经网络残差
深入探讨ResNet:解决深度神经网络训练问题的革命性架构随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加困难,主要问题是“梯度消失”和“梯度爆炸”问题。幸运的是,ResNet(ResidualNetworks)通过引入“残差学习”概念,成功地解决了这些问题,极大地推动了深度学习的发展。本文将详细介绍R
- 模型实战(19)之 从头搭建yolov9环境+tensorrt部署+CUDA前处理 -> 实现目标检测
明月醉窗台
#深度学习实战例程目标检测人工智能计算机视觉图像处理YOLO
从头搭建yolov9环境+tensorrt部署实现目标检测yolov9虚拟环境搭建实现训练、推理与导出导出onnx并转为tensorrt模型Python\C++-trt实现推理,CUDA实现图像前处理文中将给出详细实现源码python、C++效果如下:output_video_11.搭建环境拉下官方代码根据配置下载虚拟环境所需包详细步骤如下:
- 计算机视觉四大任务模型汇总
Zero_one_ws
《神经网络与深度学习》理论计算机视觉人工智能深度学习图像分类图像目标检测目标分割关键点检测
计算机视觉中有四大核心任务:1-分类任务、2-目标检测任务、3-目标分割任务和4-关键点检测任务文章1:一文读懂计算机视觉4大任务文章2:图像的目标分割任务:语义分割和实例分割不同任务之间相关但不完全相同,因此不同的任务最好选择相应的模型,话不多说,看表:(注:表中github链接并不一定是模型的正式版本,只是本文用于展示模型的网络结构和应用)1-分类任务模型序号模型ipynb模型的github链
- 计算机视觉(Computer Vision,CV)四大基本任务--分类、检测、定位、分割
明月光舞
计算机视觉计算机视觉目标检测深度学习
文章目录前言一、计算机视觉任务一:目标分类常用数据集常见网络结构二、计算机视觉任务二:目标定位三、计算机视觉任务三:目标检测常用数据集常见网络结构四、计算机视觉任务四:目标分割常用数据集常见网络结构前言计算机视觉(ComputerVision,CV)是一门研究如何让机器具备“看”的能力的学科,以人或动物的视觉能力为参照,通过计算机对视觉数据(图像、视频等)的处理、学习、推理判断,复现出、模拟出甚至
- rk3588部署yolov8视频目标检测教程
今夕是何年,
视觉算法部署YOLO目标检测人工智能
目录1.环境配置1.1训练和导出onnx环境(电脑端执行)1.2导出rknn环境(电脑端执行)2.训练部分(电脑端执行)2.1训练脚本(电脑端执行)3.onnx转rknn(电脑端执行)1.环境配置1.1训练和导出onnx环境(电脑端执行)#使用conda创建一个python环境condacreate-ntorchpython=3.9#激活环境condaactivatetorch#安装yolov8p
- 计算机视觉核心任务
飞瀑
AIyolo
1.计算机视频重要分类计算机视觉的重要任务可以大致分为以下几类:1.图像分类(ImageClassification)识别图像属于哪个类别,例如猫、狗、汽车等。应用场景:物品识别、人脸识别、医疗影像分类。代表模型:ResNet、EfficientNet、ViT(VisionTransformer)。2.目标检测(ObjectDetection)识别图像中目标的位置(边界框)及类别。应用场景:自动驾
- YOLO各版本原理和优缺点解析
Ash Butterfield
计算机视觉
YOLO(YouOnlyLookOnce)是一种实时目标检测算法,以其高速度和较高精度著称。以下是各版本的详细介绍及优缺点分析:1.YOLOv1(2016年)原理:将输入图像划分为S×SS\timesSS×S的网格,每个网格预测多个边界框和类别置信度。使用单个神经网络直接对图像进行前向传播预测边界框和类别标签。优点:速度快,适合实时应用。模型结构简单,易于实现和训练。缺点:对小目标检测效果差,容易
- 图像分类与目标检测算法
BugNest
AI算法分类目标检测ai人工智能图像处理
在计算机视觉领域,图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解,为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。一、图像分类算法图像分类是指将输入的图像划分为预定义的类别之一。这一过程的核心在于特征提取和分类器的设计。1.特征提取特征提取是图像分类的第一步,其目标是从图像中提取出能够区分不同类别的关键信息。传统的特征提取方
- 学习系列二:常用目标检测的格式转换脚本文件txt,json等
小啊磊_Vv
目标检测YOLO人工智能计算机视觉json
常用目标检测的格式转换脚本文件txt,json等文章目录常用目标检测的格式转换脚本文件txt,json等前言一、json格式转yolo的txt格式二、yolov8的关键点labelme打的标签json格式转可训练的txt格式三、yolo的目标检测txt格式转coco数据集标签的json格式四、xml格式转yolo数据集标签的txt格式五、根据yolo的目标检测训练的最好权重推理图片六、根据yolo
- 【目标检测】YOLO格式数据集txt标注转换为COCO格式JSON
ericdiii
目标检测目标检测YOLOjson
YOLO格式数据集:images|--train|--test|--vallabels|--train|--test|--val代码:importosimportjsonfromPILimportImage#设置数据集路径dataset_path="path/to/your/dataset"images_path=os.path.join(dataset_path,"images")labels_
- 目标检测:yolo格式txt转换成COCO格式json
詹姆斯德
格式转换目标检测YOLOjson
修改对应文件路径即可,其他根据txt或者希望生成的json做轻微调整#-*-coding:utf-8-*-importosimportjsonfromPILimportImagecoco_format_save_path="/home/admin1/data/LVIS"#要生成的标准coco格式标签所在文件夹yolo_format_classes_path="/home/admin1/data/L
- 基于深度学习YOLOv5的海洋动物检测系统
深度学习&目标检测实战项目
深度学习YOLO目标跟踪人工智能目标检测计算机视觉
1.引言随着人工智能技术的快速发展,深度学习在图像处理领域的应用逐渐展现出强大的能力,尤其是在目标检测任务上。YOLO(YouOnlyLookOnce)系列模型作为一种高效的目标检测算法,以其实时性和高精度在许多领域得到了广泛应用。海洋动物的检测任务也因此受益,借助深度学习模型,我们可以实时、自动地检测海洋中的动物,有助于海洋生态研究、环境保护以及水下监测等多个领域。本文将详细介绍如何基于YOLO
- DeepSeek计算机视觉(Computer Vision)基础与实践
Evaporator Core
#DeepSeek快速入门计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)是人工智能领域的一个重要分支,专注于让计算机理解和处理图像和视频数据。计算机视觉技术广泛应用于图像分类、目标检测、图像分割、人脸识别等场景。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练计算机视觉模型。本文将详细介绍如何使用DeepSeek进行计算机视觉的基础与实践,并通过代码示例帮助你掌握这些技巧。1.计算机视觉的基本概念计算机视觉的
- 基于YOLOv5、YOLOv8和YOLOv10的车站行李监控系统:深度学习应用与实现
深度学习&目标检测实战项目
YOLO深度学习人工智能目标检测目标跟踪
引言在现代车站,行李监控是一项至关重要的安全任务。随着交通安全要求的不断提高,尤其是在车站等人流密集的场所,及时检测和识别行李不仅有助于防止行李遗失或误取,还能有效地减少潜在的安全威胁。传统的人工检查方法已经无法满足快速响应和高精度的需求,而基于深度学习的目标检测技术,特别是YOLO(YouOnlyLookOnce)系列算法,成为了高效解决此类问题的理想选择。YOLO系列算法(包括YOLOv5、Y
- 使用rembg库提取图像前景(移除图像背景),并构建web应用
万里鹏程转瞬至
深度学习python库使用深度学习高级实践前端深度学习在线抠图
1、图像中的前景与背景在深度学习图像处理领域中,图像内容可以被定义为前景与背景两部分,其中感兴趣图形的被定义为前景,不感兴趣区域的背景。如在目标检测中,被框出来的目标则被定义为前景。此外,前景识别也可以理解外显著性识别,具体可以查看https://zhuanlan.zhihu.com/p/441836726。本博文所涉及的rembg库,就是基于显著性提取模型u2net所实现的。在传统图像处理中,前
- YOLOv8改进策略【Neck】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力
Limiiiing
YOLOv8改进专栏YOLO目标检测深度学习计算机视觉
一、本文介绍本文主要利用GOLD-YOLO中的颈部结构优化YOLOv8的网络模型。GOLD-YOLO颈部结构中的GD机制借鉴了全局信息融合的理念,通过独特的模块设计,在不显著增加延迟的情况下,高效融合不同层级的特征信息。将其应用于YOLOv8的改进过程中,能够使模型更有效地整合多尺度特征,减少信息损失,强化对不同大小目标物体的特征表达,从而提升模型在复杂场景下对目标物体的检测精度与定位准确性。专栏
- F-PointNet 论文阅读理解
咸鱼和白菜
目标检测f-pointnet点云目标检测
总述本文提出一种方法:使用成熟的2D的目标检测方法中cnn提供的regionproposal和3D的目标检测定位(也就是pointnet处理点云),将二者结合利用RGB-D映射和一个叫做锥体(Frustum)?形成一个3D的box参数进行输出。本文主要贡献就是在“一个叫做锥(Frustum)”的使用上结合2D的regionpropos和点云进行3D的分割和box的输出。为方便理解与书写,按照文中顺
- 探索计算机视觉的基石:PASCAL VOC 数据集
卢姬铃Edric
探索计算机视觉的基石:PASCALVOC数据集1目标检测PASCALVOC数据集简介项目地址:https://gitcode.com/Resource-Bundle-Collection/dc7bf项目介绍PASCALVOC(PatternAnalysis,StatisticalModelingandComputationalLearningVisualObjectClasses)挑战赛是计算机视
- 迁移学习 Transfer Learning
有人给我介绍对象吗
模块迁移学习人工智能机器学习
迁移学习(TransferLearning)是什么?迁移学习是一种机器学习方法,它的核心思想是利用已有模型的知识来帮助新的任务或数据集进行学习,从而减少训练数据的需求、加快训练速度,并提升模型性能。1.为什么需要迁移学习?在深度学习任务(如目标检测、分类)中,通常需要大量数据和计算资源来训练一个高性能模型。然而,在某些场景下,我们面临以下挑战:数据有限:有些领域(如医学影像、多光谱图像)很难收集足
- YOLOv8改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题
Limiiiing
YOLOv8改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文主要利用FreqFusion结构改进YOLOv8的目标检测网络模型。FreqFusion结构针对传统特征融合在密集图像预测中存在的问题,创新性地引入自适应低通滤波器生成器、偏移量生成器和自适应高通滤波器生成器。将FreqFusion应用于YOLOv8的改进过程中,能够使模型在处理复杂场景图像时,更精准地聚焦目标物体边界,减少背景噪声干扰,显著强化目标物体边界特征表达,进而提升模型在
- 【Python】成功解决ModuleNotFoundError: No module named ‘openpyxl‘
高斯小哥
BUG解决方案合集python新手入门学习
【Python】成功解决ModuleNotFoundError:Nomodulenamed‘openpyxl’欢迎进入我的个人主页,我是高斯小哥!博主档案:广东某985本硕,SCI顶刊一作,深耕深度学习多年,熟练掌握PyTorch框架。技术专长:擅长处理各类深度学习任务,包括但不限于图像分类、图像重构(去雾\去模糊\修复)、目标检测、图像分割、人脸识别、多标签分类、重识别(行人\车辆)、无监督域适
- 基于PaddleX的机器学习开发指南
大霸王龙
系统分析业务人工智能paddlepaddle
基于PaddleX的机器学习开发指南目录安装与初始化图像分类模块目标检测模块视频分割模块其他模块模型选择与配置一、安装与初始化为了使用PaddleX进行机器学习开发,请按照以下步骤安装所需依赖项:步骤1:安装依赖项运行以下命令安装相关依赖项:cd/root/.local/bin&&bashinstall-dependencies.sh或者直接复制以下内容到终端窗口执行:-pipinstall--u
- 【目标检测】必会技能之:超参数调整。
Carl_奕然
机器视觉与目标检测目标检测人工智能深度学习
超参数调整1、基础1.1什么是超参数1.2调优方法2、调整步骤2.1准备工作2.2核心步骤3、搜索空间配置4、自定义搜索空间示例4.1代码示例4.2结果展示4.2.1文件结构4.2.2文件说明4.2.2.1best_hyperparameters.yaml4.2.2.2best_fitness.png4.2.2.3tune_results.csv4.2.2.4tune_scatter_plots.
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement