from conf.config import *
mysql = MYSQL
mysql.open()
def read_data_mysql(table_name,n,label,num_features):
select_sql = "SELECT * FROM %s " % table_name
# select_sql = "SELECT * FROM %s " % table_name
record_list = mysql.select(select_sql, "")
data_list = []
for record in record_list:
record = list(record) #元组转列表
data_list.append(record)
x_list = []
y_list = []
for line in data_list:
if label == 1:
tag = line[n]
y_list.append(int(tag)) # 标志位
one_list = [int(o) for o in line[n:num_features]]
one_list.append(float(line[num_features]))
x_list.append(one_list)
else:
try:
d_9 = int(line[9])
except:
d_9 = 0
try:
d_10 = int(line[10])
except:
d_10 = 0
try:
d_13 = int(line[13])
except:
d_13 = 0
try:
d_14 = int(line[14])
except:
d_14 = 0
one_list = [d_9,d_10,d_13,d_14]
x_list.append(one_list)
return x_list, data_list
# if __name__ == "__main__":
# main()
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 正规化数据集 X
def normalize(X, axis=-1, p=2):
lp_norm = np.atleast_1d(np.linalg.norm(X, p, axis))
lp_norm[lp_norm == 0] = 1
return X / np.expand_dims(lp_norm, axis)
# 计算一个样本与数据集中所有样本的欧氏距离的平方
def euclidean_distance(one_sample, X):
one_sample = one_sample.reshape(1, -1)
X = X.reshape(X.shape[0], -1)
distances = np.power(np.tile(one_sample, (X.shape[0], 1)) - X, 2).sum(axis=1)
return distances
class Kmeans():
"""Kmeans聚类算法.
Parameters:
-----------
k: int
聚类的数目.
max_iterations: int
最大迭代次数.
varepsilon: float
判断是否收敛, 如果上一次的所有k个聚类中心与本次的所有k个聚类中心的差都小于varepsilon,
则说明算法已经收敛
"""
def __init__(self, k=2, max_iterations=500, varepsilon=0.0001):
self.k = k
self.max_iterations = max_iterations
self.varepsilon = varepsilon
# 从所有样本中随机选取self.k样本作为初始的聚类中心
def init_random_centroids(self, X):
n_samples, n_features = np.shape(X)
centroids = np.zeros((self.k, n_features))
for i in range(self.k):
centroid = X[np.random.choice(range(n_samples))]
centroids[i] = centroid
return centroids
# 返回距离该样本最近的一个中心索引[0, self.k)
def _closest_centroid(self, sample, centroids):
distances = euclidean_distance(sample, centroids)
closest_i = np.argmin(distances)
return closest_i
# 将所有样本进行归类,归类规则就是将该样本归类到与其最近的中心
def create_clusters(self, centroids, X):
n_samples = np.shape(X)[0]
clusters = [[] for _ in range(self.k)]
for sample_i, sample in enumerate(X):
centroid_i = self._closest_centroid(sample, centroids)
clusters[centroid_i].append(sample_i)
# print(clusters[0])
# print(clusters[1])
# print(clusters[2])
# print(clusters[3])
return clusters
# 对中心进行更新
def update_centroids(self, clusters, X):
n_features = np.shape(X)[1]
centroids = np.zeros((self.k, n_features))
for i, cluster in enumerate(clusters):
centroid = np.mean(X[cluster], axis=0)
centroids[i] = centroid
return centroids
# 将所有样本进行归类,其所在的类别的索引就是其类别标签
def get_cluster_labels(self, clusters, X):
y_pred = np.zeros(np.shape(X)[0])
for cluster_i, cluster in enumerate(clusters):
for sample_i in cluster:
y_pred[sample_i] = cluster_i
return y_pred
# 对整个数据集X进行Kmeans聚类,返回其聚类的标签
def predict(self, X):
# 从所有样本中随机选取self.k样本作为初始的聚类中心
centroids = self.init_random_centroids(X)
# 迭代,直到算法收敛(上一次的聚类中心和这一次的聚类中心几乎重合)或者达到最大迭代次数
for _ in range(self.max_iterations):
# 将所有进行归类,归类规则就是将该样本归类到与其最近的中心
clusters = self.create_clusters(centroids, X)
former_centroids = centroids
# 计算新的聚类中心
centroids = self.update_centroids(clusters, X)
# 如果聚类中心几乎没有变化,说明算法已经收敛,退出迭代
diff = centroids - former_centroids
if diff.any() < self.varepsilon:
break
return self.get_cluster_labels(clusters, X)
def main():
# Load the dataset
# X, y = datasets.make_blobs(n_samples=10000,
# n_features=3,
# centers=[[3, 3, 3], [0, 0, 0], [1, 1, 1], [2, 2, 2]],
# cluster_std=[0.2, 0.1, 0.2, 0.2],
# random_state=9)
from mysql_data import read_data_mysql
table_name = "actual.typhoon_route"
n = 1
label = 0
num_features = 5
X, data_list = read_data_mysql(table_name,n,label,num_features)
# 列表转ndarray
X = np.array(X)
# 用Kmeans算法进行聚类
clf = Kmeans(k=4)
y_pred = clf.predict(X)
cluster_list = []
for x,y in zip(X,y_pred):
print(x[0],y )
if (x[0],y ) not in cluster_list:
cluster_list.append((x[0],y))
print("所有台风分类:",cluster_list)
# 可视化聚类效果
fig = plt.figure(figsize=(12, 8))
ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=30, azim=20)
plt.scatter(X[y_pred == 0][:, 0], X[y_pred == 0][:, 1], X[y_pred == 0][:, 2], X[y_pred == 0][:, 3])
plt.scatter(X[y_pred == 1][:, 0], X[y_pred == 1][:, 1], X[y_pred == 1][:, 2], X[y_pred == 1][:, 3])
plt.scatter(X[y_pred == 2][:, 0], X[y_pred == 2][:, 1], X[y_pred == 2][:, 2], X[y_pred == 2][:, 3])
plt.scatter(X[y_pred == 3][:, 0], X[y_pred == 3][:, 1], X[y_pred == 3][:, 2], X[y_pred == 3][:, 3])
plt.show()
#结合台风路径,打印坐标
# fig = plt.figure(1,figsize=(12, 8))
# # ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=10, azim=11)
#
# y_pred = y_pred.tolist()
# n = len(y_pred)
#
# color = ['b','g','r','m','orange']
# for i in range(n):
# j = int(y_pred[i])
# plt.scatter(data_list[i][5], data_list[i][6], c=color[j])
# # print(i)
# if i % 1000 == 0:
# print(i)
# plt.show()
# plt.show()
if __name__ == "__main__":
main()