matlab k-s检验,柯尔莫可洛夫-斯米洛夫检验(Kolmogorov–Smirnov test,K-S test)

柯尔莫哥洛夫-斯米尔诺夫检验(Колмогоров-Смирнов检验)基于累计分布函数,用以检验两个经验分布是否不同或一个经验分布与另一个理想分布是否不同。

在进行cumulative probability统计(如下图)的时候,你怎么知道组之间是否有显著性差异?有人首先想到单因素方差分析或双尾检验(2 tailed TEST)。其实这些是不准确的,最好采用Kolmogorov-Smirnov test(柯尔莫诺夫-斯米尔诺夫检验)来分析变量是否符合某种分布或比较两组之间有无显著性差异。

matlab k-s检验,柯尔莫可洛夫-斯米洛夫检验(Kolmogorov–Smirnov test,K-S test)_第1张图片

Kolmogorov-Smirnov test原理:寻找最大距离(Distance), 所以常简称为D法。 适用于大样本。 KS test checks if two independent distributions are similar or different, by generating cumulative probability plots for two distributions and finding the distance along the y-axis for a given x values between the two curves. From all the distances calculated for each x value, the maximum distance is searched.

如何分析结果呢?This maximum distance or maximum difference is then plugged into KS probability function to calculate the probability value.  The lower the probability value is the less likely the two distributions are similar.  Conversely, the higher or more close to 1 the value is the more similar the two distributions are.极端情况:如果P值为1的话,说明两给数据基本相同,如果P值无限接近0,说明两组数据差异性极大。

当然还有更多的软件支持这个统计,如SPSS,SAS,MiniAnalysis,Clampfit10

根据软件统计出来后给出的结果决定有没有显著性差异,如果D max值>D 0.05。则认为有显著性差异。D 0.05的经验算法:1.36/SQRT(N) 其中SQRT为平方要,N为样本数。D 0.01经验算法1.64/SQRT(N) 。当然最准确的办法还是去查KS检定表。不过大多数软件如CLAMPFIT,MINIANALYSIS统计出来的结果都是直接有P值。根据这个值(alpha=0.05)就可以断定有没有差异了。

在统计学中,柯尔莫可洛夫-斯米洛夫检验基于累计分布函数,用以检验两个经验分布是否不同或一个经验分布与另一个理想分布是否不同。

在进行累计概率(cumulative probability)统计的时候,你怎么知道组之间是否有显著性差异?有人首先想到单因素方差分析或双尾检验(2 tailedTEST)。其实这些是不准确的,最好采用Kolmogorov-Smirnov test(柯尔莫诺夫-斯米尔诺夫检验)来分析变量是否符合某种分布或比较两组之间有无显著性差异。

分类:

1、Single sample Kolmogorov-Smirnov goodness-of-fit hypothesis test.

采用柯尔莫诺夫-斯米尔诺夫检验来分析变量是否符合某种分布,可以检验的分布有正态分布、均匀分布、Poission分布和指数分布。指令如下:

>> H = KSTEST(X,CDF,ALPHA,TAIL) % X为待检测样本,CDF可选:如果空缺,则默认为检测标准正态分布;

如果填写两列的矩阵,第一列是x的可能的值,第二列是相应的假设累计概率分布函数的值G(x)。ALPHA是显著性水平(默认0.05)。TAIL是表示检验的类型(默认unequal,不平衡)。还有larger,smaller可以选择。

如果,H=1 则否定无效假设; H=0,不否定无效假设(在alpha水平上)

例如,

x = -2:1:4

x =

-2  -1   0   1   2   3   4

[h,p,k,c] = kstest(x,[],0.05,0)

h =

0

p =

0.13632

k =

0.41277

c =

0.48342

The test fails to reject the null hypothesis that the values come from a standard normal distribution.

2、Two-sample Kolmogorov-Smirnov test

检验两个数据向量之间的分布的。

>>[h,p,ks2stat] = kstest2(x1,x2,alpha,tail)

% x1,x2都为向量,ALPHA是显著性水平(默认0.05)。TAIL是表示检验的类型(默认unequal,不平衡)。

例如,x = -1:1:5

y = randn(20,1);

[h,p,k] = kstest2(x,y)

h =

0

p =

0.0774

k =

0.5214

wiki翻译起来太麻烦,还有可能曲解本意,最好看原版解释。

In statistics, the minimum distance estimation used as a nonparametric test of equality of one-dimensional probability distributions used to compare a sample with a reference probability distribution (one-sample K–S test), or to compare two samples (two-sample K–S test). The Kolmogorov–Smirnov statistic quantifies a distance between theempirical distribution function of the sample and the cumulative distribution function of the reference distribution, or between the empirical distribution functions of two samples. The null distribution of this statistic is calculated under the null hypothesis that the samples are drawn from the same distribution (in the two-sample case) or that the sample is drawn from the reference distribution (in the one-sample case). In each case, the distributions considered under the null hypothesis are continuous distributions but are otherwise unrestricted.

The two-sample KS test is one of the most useful and general nonparametric methods for comparing two samples, as it is sensitive to differences in both location and shape of the empirical cumulative distribution functions of the two samples.

The Kolmogorov–Smirnov test can be modified to serve as a goodness of fit test. In the special case of testing for normality of the distribution, samples are standardized and compared with a standard normal distribution. This is equivalent to setting the mean and variance of the reference distribution equal to the sample estimates, and it is known that using the sample to modify the null hypothesis reduces the power of a test. Correcting for this bias leads to theLilliefors test. However, even Lilliefors' modification is less powerful than the Shapiro–Wilk test or Anderson–Darling test for testing normality.

matlab-罗曼诺夫斯基准则剔除粗大值

罗曼诺夫斯基准则原理  罗曼诺夫斯基准则又称 t检验准则,其特点是首先删除一个可疑的的测得值,然后按 t分布检验被剔除的测量值是否含有粗大误差 罗曼诺夫斯基准则  1)选取合适的显著度a,选择合适的数 ...

洛谷P1484 种树&;洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)

洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...

AC日记——【模板】分块/带修改莫队(数颜色) 洛谷 P1903

[模板]分块/带修改莫队(数颜色) 思路: 带修改莫队: (伏地膜xxy): 代码: #include using namespace std; #defi ...

洛谷P3237 米特运输 [HNOI2014] hash/二进制分解

正解:hash/二进制分解 解题报告: 传送门! umm首先提取下题意趴QAQ 大概是说给一棵树,每个点有一个权值,要求修改一些点的权值,使得同一个父亲的儿子权值相同,且父亲的权值必须是所有儿子权值之 ...

x的奇幻之旅 (史蒂夫·斯托加茨 著)

第1部分 数字 第1章 数学:从企鹅的"鱼"订单到无穷大 (已看) 第2章 一组组石头与加减乘除运算 (已看) 第3章 "敌人的敌人就是朋友“与"负负得正&qu ...

洛谷P3237 米特运输

题目链接 题意: 中文题,挺好理解.就是让节点的权值等于各子节点权值之和,然后每个子节点的权值相等,原本每个点有一个权值,通过最少次的修改(可以修改成小数)使其满足要求. 分析: 题意一旦读明白,题什 ...

POJ1236或洛谷2746或洛谷2812 Network of Schools

POJ原题链接 洛谷2746原题链接 洛谷2812(加强版)原题链接 显然在强连通分量里的所有学校都能通过网络得到软件,所以我们可以用\(tarjan\)求出强连通分量并缩点,统计缩点后每个点的入度和 ...

【洛谷】【洛谷月赛】4月月赛Round 1/2

洛谷月赛“月”来“月”丧了,一月更比一月丧,做得我十分不“月”…… 4月的两轮月赛,都只会T1,就写一下吧,等待后续更新…… 先看看Round1的T1: [R1T1] 网址:点我 [题意简述] 给定一 ...

洛谷P3379lca,HDU2586,洛谷P1967货车运输,倍增lca,树上倍增

倍增lca板子洛谷P3379 #include struct E { int to,next; }e[]; ],anc[][],log2n,deep[],n,m,s,ne; ...

随机推荐

Python格式化输出

今天写程序又记不清格式化输出细节了……= =索性整理一下. python print格式化输出. 1. 打印字符串 print ("His name is %s"%("A ...

Mac 下查看 Android Studio 的 SHA1的方法

cmd -> ->cd .android ->keytool -v -list -keystore debug.keystore 默认口令:android ************* ...

cocos2dx Android 环境搭建 以及 ndk调试

最近在学习cocos2dx,真的很强大,使我们更专注于游戏趣味,免去了繁琐的底层框架代码. cocos2dx的最强大之处当然在于跨平台.跨平台首选当然是Android,好记性不如烂笔头,记下本文分享给 ...

为什么要配置path环境变量?

一:关于path环境变量--为了在任意目录下,使用javac/java命令 第一种配置方法: 通过配置path环境变量,我们可以使某个程序,比如javac.exe,在任意目录下都可以运行,而不用跑到j ...

Linux 下mysql修改数据库存放目录方法和可能遇到的问题

MySQL版本:5.6.23-enterprise-commercial-advanced ,使用rpm安装linux:Red Hat Enterprise Linux Server release ...

How to trigger a Kubernetes cronjob manually-手动触发一个cronjob

What should you do when you’ve developed and installed a cron job for your Kubernetes application, a ...

17秋 软件工程 团队第五次作业 Alpha Scrum1

题目:团队作业--Alpha冲刺 17秋 软件工程 团队第五次作业 Alpha Scrum1 各个成员在 Alpha 阶段认领的任务 伟航:督促和监督团队进度,协调组内合作 港晨:APP前端页面编写: ...

codevs2189数字三角形(%100)

题目:http://codevs.cn/problem/2189/ %100的话就加一维状态.把最优性改为可行性(存在性). #include #include< ...

Linux kill/pkill/killall命令详解

kill kill(terminate a process)命令用来终止指定的进程, 对于一个后台进程就须用kill命令来终止,我们就需要先使用ps/pidof/pstree/top等工具获取进程PI ...

你可能感兴趣的:(matlab,k-s检验)