复现经典:《统计学习方法》第 4 章 朴素贝叶斯

本文是李航老师的《统计学习方法》[1]一书的代码复现。

作者:黄海广[2]

备注:代码都可以在github[3]中下载。

我将陆续将代码发布在公众号“机器学习初学者”,敬请关注。

代码目录

  • 第 1 章 统计学习方法概论

  • 第 2 章 感知机

  • 第 3 章 k 近邻法

  • 第 4 章 朴素贝叶斯

  • 第 5 章 决策树

  • 第 6 章 逻辑斯谛回归

  • 第 7 章 支持向量机

  • 第 8 章 提升方法

  • 第 9 章 EM 算法及其推广

  • 第 10 章 隐马尔可夫模型

  • 第 11 章 条件随机场

  • 第 12 章 监督学习方法总结

代码参考:wzyonggege[4],WenDesi[5],火烫火烫的[6]

第 4 章 朴素贝叶斯

1.朴素贝叶斯法是典型的生成学习方法。生成方法由训练数据学习联合概率分布  ,然后求得后验概率分布 。具体来说,利用训练数据学习 和 的估计,得到联合概率分布:

概率估计方法可以是极大似然估计或贝叶斯估计。

2.朴素贝叶斯法的基本假设是条件独立性,

这是一个较强的假设。由于这一假设,模型包含的条件概率的数量大为减少,朴素贝叶斯法的学习与预测大为简化。因而朴素贝叶斯法高效,且易于实现。其缺点是分类的性能不一定很高。

3.朴素贝叶斯法利用贝叶斯定理与学到的联合概率模型进行分类预测。

将输入 分到后验概率最大的类 。

后验概率最大等价于 0-1 损失函数时的期望风险最小化。

模型:

  • 高斯模型

  • 多项式模型

  • 伯努利模型

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline


from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split


from collections import Counter
import math
# data
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, :])
    # print(data)
    return data[:,:-1], data[:,-1]
X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
X_test[0], y_test[0]
(array([5.1, 3.8, 1.9, 0.4]), 0.0)

参考:https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/

GaussianNB 高斯朴素贝叶斯

特征的可能性被假设为高斯

概率密度函数:

数学期望(mean):

方差:

class NaiveBayes:
    def __init__(self):
        self.model = None


    # 数学期望
    @staticmethod
    def mean(X):
        return sum(X) / float(len(X))


    # 标准差(方差)
    def stdev(self, X):
        avg = self.mean(X)
        return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))


    # 概率密度函数
    def gaussian_probability(self, x, mean, stdev):
        exponent = math.exp(-(math.pow(x - mean, 2) /
                              (2 * math.pow(stdev, 2))))
        return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent


    # 处理X_train
    def summarize(self, train_data):
        summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
        return summaries


    # 分类别求出数学期望和标准差
    def fit(self, X, y):
        labels = list(set(y))
        data = {label: [] for label in labels}
        for f, label in zip(X, y):
            data[label].append(f)
        self.model = {
            label: self.summarize(value)
            for label, value in data.items()
        }
        return 'gaussianNB train done!'


    # 计算概率
    def calculate_probabilities(self, input_data):
        # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
        # input_data:[1.1, 2.2]
        probabilities = {}
        for label, value in self.model.items():
            probabilities[label] = 1
            for i in range(len(value)):
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(
                    input_data[i], mean, stdev)
        return probabilities


    # 类别
    def predict(self, X_test):
        # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
        label = sorted(
            self.calculate_probabilities(X_test).items(),
            key=lambda x: x[-1])[-1][0]
        return label


    def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1


        return right / float(len(X_test))
model = NaiveBayes()
model.fit(X_train, y_train)
'gaussianNB train done!'
print(model.predict([4.4,  3.2,  1.3,  0.2]))
0.0
model.score(X_test, y_test)
1.0

scikit-learn 实例

from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train, y_train)
GaussianNB(priors=None, var_smoothing=1e-09)
clf.score(X_test, y_test)
1.0
clf.predict([[4.4,  3.2,  1.3,  0.2]])
array([0.])

参考资料

[1] 《统计学习方法》: https://baike.baidu.com/item/统计学习方法/10430179
[2] 黄海广: https://github.com/fengdu78
[3] github: https://github.com/fengdu78/lihang-code
[4] wzyonggege: https://github.com/wzyonggege/statistical-learning-method
[5] WenDesi: https://github.com/WenDesi/lihang_book_algorithm
[6] 火烫火烫的: https://blog.csdn.net/tudaodiaozhale

想脱单,找湾区人工智能

认识帅张,维权不再难

用法律武器,痛击腾讯侵权行为!!!湾区人工智能可以改善知识产权现状吗?

【中美之争】其实已经失去了悬念 (深度好文)|湾区人工智能

【欧洲已死】李开复:欧洲人工智能毫无希望

80后,天才程序员, Facebook 第一任 CTO,看看开挂的人生到底有多变态?

【厂妹进谷歌】从富士康流水线小妹到 Google 工程师,She made it !!!

【刚刚】世界顶级名校:美国斯坦福大学在人工智能领域诞生了一位来自中国的女神

【24万欧】国外人工智能计算机博士自述面试经历

看看你的母校是否开通了人工智能及其相关专业

IT行业高工资的时代已经结束了 | 紫竹张先生

凌晨一点的粤海街道对抗来自美国的力量|湾区人工智能

进入顶层社会的顺序是什么?

程序员的周末是风花雪月还是孤独寂寞?

每天都要刷碗的清贫博士后,生活捉襟见肘,国外华人也不容易

农村的未来,一|深度揭秘俄罗斯远东真相(上)|湾区人工智能

为什么农村出来的大学生大多混得比较差?

【月薪三万】听说深圳老师工资全国最高!!!比德国还高

【幸福的猪】德国难民躺赢的人生:和三个老婆造人就是神圣不可侮辱的职业

长按扫码撩海归

   觉得不错, 请随意转发,麻烦点个在看!

你可能感兴趣的:(复现经典:《统计学习方法》第 4 章 朴素贝叶斯)