通过FastSpeech2中文合成项目梳理TTS流程3: 语音合成(synthesize.py)

1. 参考github网址:

GitHub - roedoejet/FastSpeech2: An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

2. 语音合成所用python 命令:

python3 synthesize.py --text "你好" --restore_step 400000   --mode single -p config/AISHELL3/preprocess.yaml -m config/AISHELL3/model.yaml -t config/AISHELL3/train.yaml

附录:

--restore_step 这个parameter要根据所使用的trained model的实际情况填写

-- text这个parameter只能输入汉字不能输入拼音

3. 数据训练代码解析

3.1 代码整体架构:

有4个常规函数:

def read_lexicon(lex_path):

def preprocess_english(text, preprocess_config):

def preprocess_mandarin(text, preprocess_config):

def synthesize(model, step, configs, vocoder, batchs, control_values):

和一个main函数

if __name__ == "__main__":

3.2 分解代码,逐个理解:

3.2.1理解main函数

定义可控训练参数

if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("--restore_step", type=int, required=True)
    parser.add_argument(
        "--mode",
        type=str,
        choices=["batch", "single"],
        required=True,
        help="Synthesize a whole dataset or a single sentence",
    )
    parser.add_argument(
        "--source",
        type=str,
        default=None,
        help="path to a source file with format like train.txt and val.txt, for batch mode only",
    )
    parser.add_argument(
        "--text",
        type=str,
        default=None,
        help="raw text to synthesize, for single-sentence mode only",
    )
    parser.add_argument(
        "--speaker_id",
        type=int,
        default=0,
        help="speaker ID for multi-speaker synthesis, for single-sentence mode only",
    )
    parser.add_argument(
        "-p",
        "--preprocess_config",
        type=str,
        required=True,
        help="path to preprocess.yaml",
    )
    parser.add_argument(
        "-m", "--model_config", type=str, required=True, help="path to model.yaml"
    )
    parser.add_argument(
        "-t", "--train_config", type=str, required=True, help="path to train.yaml"
    )
    parser.add_argument(
        "--pitch_control",
        type=float,
        default=1.0,
        help="control the pitch of the whole utterance, larger value for higher pitch",
    )
    parser.add_argument(
        "--energy_control",
        type=float,
        default=1.0,
        help="control the energy of the whole utterance, larger value for larger volume",
    )
    parser.add_argument(
        "--duration_control",
        type=float,
        default=1.0,
        help="control the speed of the whole utterance, larger value for slower speaking rate",
    )
    args = parser.parse_args()

分batch mode和single mode检查source text

    # Check source texts
    if args.mode == "batch":
        assert args.source is not None and args.text is None
    if args.mode == "single":
        assert args.source is None and args.text is not None

读取configs

    # Read Config
    preprocess_config = yaml.load(
        open(args.preprocess_config, "r"), Loader=yaml.FullLoader
    )
    model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader)
    train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader)
    configs = (preprocess_config, model_config, train_config)

从utils文件夹下的model.py调用模型和声码器

    # Get model
    model = get_model(args, configs, device, train=False)

    # Load vocoder
    vocoder = get_vocoder(model_config, device)

根据之前设定的preprocess_config["preprocessing"]["text"]["language"] 是 "zh"来调动preprocess_mandarin 这个function,对texts进行预处理

附录:如果用英语或者其他语言,preprocess_config["preprocessing"]["text"]["language"]以及synthesize.py中的preprocess function要相应调整

    # Preprocess texts
    if args.mode == "batch":
        # Get dataset
        dataset = TextDataset(args.source, preprocess_config)
        batchs = DataLoader(
            dataset,
            batch_size=8,
            collate_fn=dataset.collate_fn,
        )
    if args.mode == "single":
        ids = raw_texts = [args.text[:100]]
        speakers = np.array([args.speaker_id])
        if preprocess_config["preprocessing"]["text"]["language"] == "en":
            texts = np.array([preprocess_english(args.text, preprocess_config)])
        elif preprocess_config["preprocessing"]["text"]["language"] == "zh":
            texts = np.array([preprocess_mandarin(args.text, preprocess_config)])
        text_lens = np.array([len(texts[0])])
        batchs = [(ids, raw_texts, speakers, texts, text_lens, max(text_lens))]

    control_values = args.pitch_control, args.energy_control, args.duration_control

调动synthesize这个function进行最终语音合成

    synthesize(model, args.restore_step, configs, vocoder, batchs, control_values)

3.2.2 理解preprocess_mandarin函数

调动read_lexicon这个function,读取lexicon(我设定的为"./lexicon/pinyin-lexicon-r.txt")

def preprocess_mandarin(text, preprocess_config):
    lexicon = read_lexicon(preprocess_config["path"]["lexicon_path"])

调动Python 中拼音库 PyPinyin,把text转化成phones这个list里的phones

附录:style=Style.TONE3,声调风格3,即拼音声调在各个拼音之后,用数字 [1-4] 进行表示。如: 中国 -> ``zhong1 guo2``

    phones = []
    pinyins = [
        p[0]
        for p in pinyin(
            text, style=Style.TONE3, strict=False, neutral_tone_with_five=True
        )
    ]
    for p in pinyins:
        if p in lexicon:
            phones += lexicon[p]
        else:
            phones.append("sp")

    phones = "{" + " ".join(phones) + "}"
    print("Raw Text Sequence: {}".format(text))
    print("Phoneme Sequence: {}".format(phones))

调动text文件夹里的_init_.py里的text_to_sequence这个function,把之前处理好的phones变成sequence,输出这个sequence

    sequence = np.array(
        text_to_sequence(
            phones, preprocess_config["preprocessing"]["text"]["text_cleaners"]
        )
    )

    return np.array(sequence)

3.2.3 理解preprocess_english函数

同理类比preprocess_mandarin,不再做详细解释

def preprocess_english(text, preprocess_config):
    text = text.rstrip(punctuation)
    lexicon = read_lexicon(preprocess_config["path"]["lexicon_path"])

    g2p = G2p()
    phones = []
    words = re.split(r"([,;.\-\?\!\s+])", text)
    for w in words:
        if w.lower() in lexicon:
            phones += lexicon[w.lower()]
        else:
            phones += list(filter(lambda p: p != " ", g2p(w)))
    phones = "{" + "}{".join(phones) + "}"
    phones = re.sub(r"\{[^\w\s]?\}", "{sp}", phones)
    phones = phones.replace("}{", " ")

    print("Raw Text Sequence: {}".format(text))
    print("Phoneme Sequence: {}".format(phones))
    sequence = np.array(
        text_to_sequence(
            phones, preprocess_config["preprocessing"]["text"]["text_cleaners"]
        )
    )

    return np.array(sequence)

3.2.4 理解read_lexicon函数

根据lexicon_path读取lexicon

附录:

lexicon统一要求格式如下

WORDA PHONEA PHONEB
WORDA PHONEC
WORDB PHONEB PHONEC
def read_lexicon(lex_path):
    lexicon = {}
    with open(lex_path) as f:
        for line in f:
            temp = re.split(r"\s+", line.strip("\n"))
            word = temp[0]
            phones = temp[1:]
            if word.lower() not in lexicon:
                lexicon[word.lower()] = phones
    return lexicon

3.2.5 理解synthesize函数

3.2.5.1 synthesize函数的input

是在mian函数里定好的,详见上文3.2.1对于main函数的解释

if __name__ == "__main__":
    synthesize(model, args.restore_step, configs, vocoder, batchs, control_values)

3.2.5.2理解synthesize函数

从utils文件夹下的tools.py调用函数to_device function加载数据,也加载main函数里定好的model,最后调动utils文件夹下的tools.py中的synth_samples function合成最终语音

def synthesize(model, step, configs, vocoder, batchs, control_values):
    preprocess_config, model_config, train_config = configs
    pitch_control, energy_control, duration_control = control_values

    for batch in batchs:
        batch = to_device(batch, device)
        with torch.no_grad():
            # Forward
            output = model(
                *(batch[2:]),
                p_control=pitch_control,
                e_control=energy_control,
                d_control=duration_control
            )
            synth_samples(
                batch,
                output,
                vocoder,
                model_config,
                preprocess_config,
                train_config["path"]["result_path"],
            )

4. 语音合成代码的输出

在设定好的result_path(我这里是./output/result/AISHELL3)输出音频和合成音频的频谱图

你可能感兴趣的:(TTS,in,FastSpeech2,pytorch,深度学习,神经网络)