Python-matplotlib 笔记整理

Python-matplotlib 笔记整理

仅供个人自学使用,自行参考
Reference:
司守奎,孙玺青,Python数学实验与建模,科学出版社,2020
https://www.jianshu.com/p/da385a35f68d
https://www.runoob.com/numpy/numpy-matplotlib.html

导包

import numpy as np 
from matplotlib import pyplot as plt 

Figure:面板(图),matplotlib中的所有图像都是位于figure对象中,一个图像只能有一个figure对象。

Subplot:子图,figure对象下创建一个或多个subplot对象(即axes)用于绘制图像。

配置参数

axex: 设置坐标轴边界和表面的颜色、坐标刻度值大小和网格的显示
figure: 控制dpi、边界颜色、图形大小、和子区( subplot)设置
font: 字体集(font family)、字体大小和样式设置
grid: 设置网格颜色和线性
legend: 设置图例和其中的文本的显示
line: 设置线条(颜色、线型、宽度等)和标记
patch: 是填充2D空间的图形对象,如多边形和圆。控制线宽、颜色和抗锯齿设置等。
savefig: 可以对保存的图形进行单独设置
verbose: 设置matplotlib在执行期间信息输出,如silent、helpful、debug和debug-annoying。
xticks和yticks: 为x,y轴的主刻度和次刻度设置颜色、大小、方向,以及标签大小。

线条样式

linestyle            描述
——————————————————————————————
‘-’                  实线
‘--’                 虚线
‘-.’                 点画线
‘:’                  点线

点形状

标记maker            描述
————————————————————————————————————
‘o’                 圆圈  
‘.’                 点
‘D’                 菱形  
‘s’                 正方形
‘h’                 六边形1*’                 星号
‘H’                 六边形2    
‘d’                 小菱形
‘_’                 水平线 
‘v’                 一角朝下的三角形
‘8’                 八边形 
‘<’                 一角朝左的三角形
‘p’                 五边形 
‘>’                 一角朝右的三角形
‘,’                 像素  
‘^’                 一角朝上的三角形
‘+’                 加号  
‘\  ‘               竖线
‘None,’’,’ ‘       无   
‘x’                 X

颜色

别名             颜色   
———————————————————————
b               蓝色  
g               绿色
r               红色  
y               黄色
c               青色
k               黑色   
m               洋红色 
w               白色

plot时可以设置的属性

属性                      值类型
alpha                   浮点值
animated                [True / False]
antialiased or aa       [True / False]
clip_box                matplotlib.transform.Bbox 实例
clip_on                 [True / False]
clip_path               Path 实例, Transform,以及Patch实例
color or c              任何 matplotlib 颜色
contains                命中测试函数
dash_capstyle           ['butt' / 'round' / 'projecting']
dash_joinstyle          ['miter' / 'round' / 'bevel']
dashes                  以点为单位的连接/断开墨水序列
data                    (np.array xdata, np.array ydata)
figure                  matplotlib.figure.Figure 实例
label                   任何字符串,可以用LaTex格式显示公式
linestyle or ls         [ '-' / '--' / '-.' / ':' / 'steps' / ...]
linewidth or lw         以点为单位的浮点值
lod                     [True / False]
marker                  [ '+' / ',' / '.' / '1' / '2' / '3' / '4' ]
markeredgecolor or mec  任何 matplotlib 颜色
markeredgewidth or mew  以点为单位的浮点值
markerfacecolor or mfc  任何 matplotlib 颜色
markersize or ms        浮点值
markevery               [ None / 整数值 / (startind, stride) ]
picker                  用于交互式线条选择
pickradius              线条的拾取选择半径
solid_capstyle          ['butt' / 'round' / 'projecting']
solid_joinstyle         ['miter' / 'round' / 'bevel']
transform               matplotlib.transforms.Transform 实例
visible                 [True / False]
xdata                   np.array
ydata                   np.array
zorder                  任何数值

背景色

通过向如matplotlib.pyplot.axes()或者matplotlib.pyplot.subplot()这样的方法提供一个axisbg参数,可以指定坐标这的背景色。

subplot(111,axisbg=(0.1843,0.3098,0.3098)

设置字体样式

两个版本

#用来正常显示中文标签
rcParams['font.sans-serif']=['SimHei']
#用来正常显示负号
rcParams['axes.unicode_minus']=False
#或者上面等价写成下面两行
rc('font', family='SimHei')
rc('axes', unicode_minus=False)
# fname 为 你下载的字体库路径,注意 SimHei.ttf 字体的路径
zhfont1 = matplotlib.font_manager.FontProperties(fname="SimHei.ttf") 
plt.title("测试", fontproperties=zhfont1) 
# fontproperties 设置中文显示,fontsize 设置字体大小
plt.xlabel("x 轴", fontproperties=zhfont1)
plt.ylabel("y 轴", fontproperties=zhfont1)

向量场

#为坐标轴添加箭头
axes[0,1].arrow(0,0,0.5,0.5) 
#二维箭头
axes[1,1].quiver(y,z) 
#二维箭头
axes[0,1].streamplot(X,Y,U,V) 

特殊数据分布图

#直方图
ax1.hist(y)
#箱形图
ax3.boxplot(y) 
#小提琴图
ax3.violinplot(z) 

保存与关闭

保存

#保存画布
plt.savefig('foo.png')
#保存透明画布
plt.savefig('foo.png', transparent=True)

关闭

plt.cla()        #清除坐标轴
plt.clf()        #清除画布
plt.close()      #关闭窗口

实例

最简单的图
import numpy as np 
from matplotlib import pyplot as plt 
#x轴的值
x = np.arange(1,11) 
#y轴的值
y =  2  * x +  5 
#标题
plt.title("Matplotlib demo") 
#x标签,y标签
plt.xlabel("x axis caption") 
plt.ylabel("y axis caption") 
#生成子图
plt.plot(x,y) 
#show显示
plt.show()

Python-matplotlib 笔记整理_第1张图片

一窗口多图
#一个窗口,多个图,多条数据
sub1=plt.subplot(211,facecolor=(0.1843,0.3098,0.3098))  #将窗口分成2行1列,在第1个作图,并设置背景色
sub2=plt.subplot(212)   #将窗口分成2行1列,在第2个作图
sub1.plot(x,y)          #绘制子图
sub2.plot(x,y)          #绘制子图

axes1 = plt.axes([.2, .3, .1, .1], facecolor='y')  #添加一个子坐标系,rect=[左, 下, 宽, 高]
plt.plot(x,y)           #绘制子坐标系,
axes2 = plt.axes([0.7, .2, .1, .1], facecolor='y')  #添加一个子坐标系,rect=[左, 下, 宽, 高]
plt.plot(x,y)
plt.show()

Python-matplotlib 笔记整理_第2张图片

极坐标
fig = plt.figure(2)                                #新开一个窗口
ax1 = fig.add_subplot(1,2,1,polar=True)                  #启动一个极坐标子图
theta=np.arange(0,2*np.pi,0.02)              #角度数列值
ax1.plot(theta,2*np.ones_like(theta),lw=2)   #画图,参数:角度,半径,lw线宽
ax1.plot(theta,theta/6,linestyle='--',lw=2)           #画图,参数:角度,半径,linestyle样式,lw线宽

ax2 = fig.add_subplot(1,2,2,polar=True)                  #启动一个极坐标子图
ax2.plot(theta,np.cos(5*theta),linestyle='--',lw=2)
ax2.plot(theta,2*np.cos(4*theta),lw=2)

ax2.set_rgrids(np.arange(0.2,2,0.2),angle=45)   #距离网格轴,轴线刻度和显示位置
ax2.set_thetagrids([0,45,90])                   #角度网格轴,范围0-360度

plt.show()

Python-matplotlib 笔记整理_第3张图片

柱状图
plt.figure(3)
x_index = np.arange(5)   #柱的索引
x_data = ('A', 'B', 'C', 'D', 'E')
y1_data = (20, 35, 30, 35, 27)
y2_data = (25, 32, 34, 20, 25)
bar_width = 0.35   #定义一个数字代表每个独立柱的宽度

rects1 = plt.bar(x_index, y1_data, width=bar_width,alpha=0.4, color='b',label='legend1')            #参数:左偏移、高度、柱宽、透明度、颜色、图例
rects2 = plt.bar(x_index + bar_width, y2_data, width=bar_width,alpha=0.5,color='r',label='legend2') #参数:左偏移、高度、柱宽、透明度、颜色、图例
#关于左偏移,不用关心每根柱的中心不中心,因为只要把刻度线设置在柱的中间就可以了
plt.xticks(x_index + bar_width/2, x_data)   #x轴刻度线
plt.legend()    #显示图例
plt.tight_layout()  #自动控制图像外部边缘,此方法不能够很好的控制图像间的间隔
plt.show()

Python-matplotlib 笔记整理_第4张图片

直方图
fig,(ax0,ax1) = plt.subplots(nrows=2,figsize=(9,6))     #在窗口上添加2个子图
sigma = 1   #标准差
mean = 0    #均值
x=mean+sigma*np.random.randn(10000)   #正态分布随机数
ax0.hist(x,bins=40,normed=False,histtype='bar',facecolor='yellowgreen',alpha=0.75)   #normed是否归一化,histtype直方图类型,facecolor颜色,alpha透明度
ax1.hist(x,bins=20,normed=1,histtype='bar',facecolor='pink',alpha=0.75,cumulative=True,rwidth=0.8) #bins柱子的个数,cumulative是否计算累加分布,rwidth柱子宽度
plt.show()  #所有窗口运行

Python-matplotlib 笔记整理_第5张图片

散点图
fig = plt.figure(4)          #添加一个窗口
ax =fig.add_subplot(1,1,1)   #在窗口上添加一个子图
x=np.random.random(100)      #产生随机数组
y=np.random.random(100)      #产生随机数组
ax.scatter(x,y,s=x*1000,c='y',marker=(5,1),alpha=0.5,lw=2,facecolors='none')  #x横坐标,y纵坐标,s图像大小,c颜色,marker图片,lw图像边框宽度
plt.show()  #所有窗口运行

Python-matplotlib 笔记整理_第6张图片

三维图
fig = plt.figure(5)
ax=fig.add_subplot(1,1,1,projection='3d')     #绘制三维图

x,y=np.mgrid[-2:2:20j,-2:2:20j]  #获取x轴数据,y轴数据
z=x*np.exp(-x**2-y**2)   #获取z轴数据

ax.plot_surface(x,y,z,rstride=2,cstride=1,cmap=plt.cm.coolwarm,alpha=0.8)  #绘制三维图表面
ax.set_xlabel('x-name')     #x轴名称
ax.set_ylabel('y-name')     #y轴名称
ax.set_zlabel('z-name')     #z轴名称

plt.show()

你可能感兴趣的:(python',数据科学,统计学,可视化,数据可视化,python)