ROS学习笔记(3) tf坐标系

tf功能包用于管理机器人的各个坐标系。

机器人底盘坐标系:base_link   (parent)

雷达坐标系(名称根据雷达而定,如base_laser)(child)

以下命令可以查询坐标系间的变换关系:

$ rosrun tf tf_echo coordinate1 coordinate2

机器人上的坐标系:

1)map坐标系(地图坐标系,一般与世界坐标系重合)

2)base_link坐标系(机器人本体坐标系,原点与机器人中心重合)

3)odom坐标系(里程计坐标系,与map坐标系的差异即为里程计累计误差)

tf坐标系广播

例:turtlesim中的turtle_tf_broadcaster代码 

#include 
#include 
#include 

std::string turtle_name;

void poseCallback(const turtlesim::PoseConstPtr& msg)
{
	// 创建tf的广播器,相当于发布话题时定义一个发布器
	static tf::TransformBroadcaster br;

	//根据乌龟当前的位姿。设置相对于世界坐标系的坐标变换
	tf::Transform transform;// 定义存放转换信息(平动,转动)的变量transform,初始化tf数据
	transform.setOrigin( tf::Vector3(msg->x, msg->y, 0.0) );//设置平移变换
	tf::Quaternion q;//定义旋转,或者说设置角度变换
	q.setRPY(0, 0, msg->theta);
	transform.setRotation(q);

	// 广播world与海龟坐标系之间的tf数据
	br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "world", turtle_name));
}

int main(int argc, char** argv)
{
    // 初始化ROS节点
	ros::init(argc, argv, "my_tf_broadcaster");

	// 输入参数作为海龟的名字
	if (argc != 2)
	{
		ROS_ERROR("need turtle name as argument"); 
		return -1;
	}

	turtle_name = argv[1];

	// 订阅海龟的位姿话题
	ros::NodeHandle node;
	ros::Subscriber sub = node.subscribe(turtle_name+"/pose", 10, &poseCallback);//订阅海龟的位置,发生变化则进入回调函数,进行广播

    // 循环等待回调函数
	ros::spin();

	return 0;
};

 tf坐标系监听

例:turtle_tf_listener代码

#include 
#include 
#include 
#include 

int main(int argc, char** argv)
{
	// 初始化ROS节点
	ros::init(argc, argv, "my_tf_listener");

    // 创建节点句柄
	ros::NodeHandle node;

	// 请求产生turtle2
	ros::service::waitForService("/spawn");
	ros::ServiceClient add_turtle = node.serviceClient("/spawn");
	turtlesim::Spawn srv;
	add_turtle.call(srv);

	// 创建发布turtle2速度控制指令的发布者
	ros::Publisher turtle_vel = node.advertise("/turtle2/cmd_vel", 10);

	// 创建tf的监听器
	tf::TransformListener listener;

	ros::Rate rate(10.0);
	while (node.ok())
	{
		// 获取turtle1与turtle2坐标系之间的tf数据
		tf::StampedTransform transform;
		try
		{
			listener.waitForTransform("/turtle2", "/turtle1", ros::Time(0), ros::Duration(3.0));
			listener.lookupTransform("/turtle2", "/turtle1", ros::Time(0), transform);
		}
		catch (tf::TransformException &ex) 
		{
			ROS_ERROR("%s",ex.what());
			ros::Duration(1.0).sleep();
			continue;
		}

		// 根据turtle1与turtle2坐标系之间的位置关系,发布turtle2的速度控制指令
		geometry_msgs::Twist vel_msg;
		vel_msg.angular.z = 4.0 * atan2(transform.getOrigin().y(),
				                        transform.getOrigin().x());
		vel_msg.linear.x = 0.5 * sqrt(pow(transform.getOrigin().x(), 2) +
				                      pow(transform.getOrigin().y(), 2));
		turtle_vel.publish(vel_msg);

		rate.sleep();
	}
	return 0;
};

另:以上代码的Python版本

tf广播器:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
 
import roslib
roslib.load_manifest('learning_tf')
import rospy
 
import tf
import turtlesim.msg
 
def handle_turtle_pose(msg, turtlename):
    br = tf.TransformBroadcaster()
    br.sendTransform((msg.x, msg.y, 0),
                     tf.transformations.quaternion_from_euler(0, 0, msg.theta),
                     rospy.Time.now(),
                     turtlename,
                     "world")
 
if __name__ == '__main__':
    rospy.init_node('turtle_tf_broadcaster')
    turtlename = rospy.get_param('~turtle')
    rospy.Subscriber('/%s/pose' % turtlename,
                     turtlesim.msg.Pose,
                     handle_turtle_pose,
                     turtlename)
    rospy.spin()

tf监听器:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
 
import roslib
roslib.load_manifest('learning_tf')
import rospy
import math
import tf
import geometry_msgs.msg
import turtlesim.srv
 
if __name__ == '__main__':
    rospy.init_node('turtle_tf_listener')
 
    listener = tf.TransformListener()
 
    rospy.wait_for_service('spawn')
    spawner = rospy.ServiceProxy('spawn', turtlesim.srv.Spawn)
    spawner(4, 2, 0, 'turtle2')
 
    turtle_vel = rospy.Publisher('turtle2/cmd_vel', geometry_msgs.msg.Twist,queue_size=1)
 
    rate = rospy.Rate(10.0)
    while not rospy.is_shutdown():
        try:
            (trans,rot) = listener.lookupTransform('/turtle2', '/turtle1', rospy.Time(0))
        except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException):
            continue
        angular = 4 * math.atan2(trans[1], trans[0])
        linear = 0.5 * math.sqrt(trans[0] ** 2 + trans[1] ** 2)
        cmd = geometry_msgs.msg.Twist()
        cmd.linear.x = linear
        cmd.angular.z = angular
        turtle_vel.publish(cmd)
 
        rate.sleep()

你可能感兴趣的:(学习)