PyTorch的可重复性问题【设置随机种子】

由于在模型训练的过程中存在大量的随机操作,使得对于同一份代码,重复运行后得到的结果不一致。因此,为了得到可重复的实验结果,我们需要对随机数生成器设置一个固定的种子。

def seed_everything(seed=1029):
    '''
    设置整个开发环境的seed
    :param seed:
    :param device:
    :return:
    '''
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = 

你可能感兴趣的:(#,Pytorch,pytorch,深度学习,python)