- 数学中的“矩”
heraldww
数学概率论人工智能机器学习
数学中的“矩”矩的数学意义,高度总结:数学上,“矩”是一组点组成的模型的特定的数量测度。在力学和统计学中都有用到“矩”。如果这些点代表“质量”,那么:零阶矩表示所有点的质量;一阶矩表示质心;二阶矩表示转动惯量。如果这些点代表“概率密度”,那么:零阶矩表示这些点的总概率(也就是1);一阶矩表示期望;二阶(中心)矩表示方差;三阶(中心)矩表示偏斜度;四阶(中心)矩表示峰度;这个数学上的概念和物理上的“
- 集成学习(Ensemble Learning)基础知识1
代码骑士
#机器学习集成学习机器学习人工智能
文章目录一、集成学习1、基本概念2、回顾:误差的偏差-方差分解3、为什么集成学习有效?4、基学习器:“好而不同”5、集成学习的两个基本问题(1)如何训练出具有差异性的多个基学习器?(2)如何将多个基学习器的预测结果集成为最终的强学习器预测结果?二、自助法(Bagging)1、Bagging2、BootstrapBootstrap采样的数学性质3、Bagging:集成学习的两个基本问题(1)如何训练
- SQL优化之MySQL执行计划(Explain)及索引失效详解
一未道
#性能优化大数据sqlmysql数据库
1、执行计划基础1.1、执行计划(Explain)定义在MySQL中可以通过explain关键字模拟优化器执行SQL语句,从而解析MySQL是如何处理SQL语句的。1.2、MySQL查询过程客户端向MySQL服务器发送一条查询请求服务器首先检查查询缓存,如果命中缓存,则立刻返回存储在缓存中的结果。否则进入下一阶段服务器进行SQL解析、预处理、之后由优化器生成对应的执行计划MySQL根据执行计划,调
- rstudio检验多重共线性代码
十三木
机器学习人工智能
在Rstudio中,你可以使用vif()函数来检验多重共线性。例如,假设你已经建立了一个线性回归模型,并将它保存在一个变量model中。你可以使用如下代码来检验多重共线性:library(car)vif(model)这会返回每个自变量的方差膨胀因子(VIF),如果VIF较大(通常超过5或10),则可能存在多重共线性。你可以使用这些信息来确定是否需要删除某些自变量或使用其他方法来处理多重共线性。
- Python 机器学习 基础 之 学习 基础环境搭建
仙魁XAN
Python机器学习基础+实战案例python学习开发语言机器学习machinelearning
Python机器学习基础之学习基础环境搭建目录Python机器学习基础之学习基础环境搭建一、简单介绍二、什么是机器学习三、python环境的搭建1、Python安装包下载2、这里以下载Python3.10.9为例3、安装Python3.10.94、检验python是否安装成功,win+R快捷打开运行,输入cmd,打开cmd四、Pycharm环境搭建1、下载Pycharm安装包2、安装Pycharm
- 手机零部件三维光学测量解决方案
yy229382036
人工智能3d光学成像算法
在移动互联网时代,智能终端深受市场追捧,而智能手机占据了第一大移动智能终端的地位。市场的火热造就了手机厂商白热化的竞争,继CPU、屏幕、摄像头等硬件配置大战之后,以外观、设计、质量为切入点的设计及功能竞争,也日趋激烈。在手机设计、质量检测中,无论是手机中框还是屏幕,利用三维光学测量技术,有助于优化从原型和模具构建、首件检验报告到装配分析等环节的质量控制,并有效节省检测时间,快速推进新产品上市。另外
- Android Bootable Recovery 中的 `imgdiff.cpp` 文件解析
zhangjiaofa
android
AndroidBootableRecovery中的imgdiff.cpp文件解析引言在Android系统中,Recovery模式是一个非常重要的组成部分,它允许用户在设备无法正常启动时进行系统修复、数据恢复、OTA更新等操作。其中,OTA(Over-The-Air)更新是Android系统中常见的更新方式,它通过网络下载更新包并应用到设备上。为了优化更新包的大小,Android提供了一个高效的差分
- 蓝桥杯Python赛道备赛——Day1:基础算法
SKY YEAM
蓝桥杯备赛蓝桥杯python算法
本博客就蓝桥杯中的基础算法(这一部分说是算法,但更是一些简单的操作)进行罗列,包括:枚举、模拟、前缀和、差分、二分查找、进制转换、贪心、位运算和双指针。每一个算法都在给出概念解释的同时,给出了示例代码,以供低年级师弟师妹们学习和练习。前序知识:(1)Python基础语法(2)PythonOOP(面向对象编程)基础算法(操作)一、枚举二、模拟三、前缀和四、差分五、二分查找六、进制转换七、贪心八、位运
- 电磁兼容(EMC):LVDS接口电路EMC设计详解
硬件修炼塔
电磁兼容设计单片机嵌入式硬件物联网硬件工程人工智能
目录1LVDS接口简介2LVDS接口工作原理3LVDS接口EMC优点4PCB设计要点1LVDS接口简介LVDS接口,即LowVoltageDifferentialSignaling,是一种低压差分信号技术接口。它又称为RS-644总线接口,是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。LVDS接口目前不
- 编程:人类与机器对话的「通用语言」
javascript
——从0和1到智能时代的思维革命一、编程的本质:用逻辑驯服机器的艺术2024年,NASA「毅力号」火星车在杰泽罗陨石坑钻取岩芯时,依靠的是地球上工程师编写的120万行C语言代码。这些代码的本质,是将「避障→识别→调整」等复杂指令,转化为机器能理解的0和1序列。编程的核心不是写代码,而是把现实问题拆解为机器可执行的逻辑步骤。1.1从打孔纸带到图形化编程的进化1842年:AdaLovelace为差分机
- 目标:掌握无位置传感器(FOC)控制PMSM的设计与实现
老衲在深渊
电赛单片机嵌入式硬件电赛无位置传感电机
第一阶段:基础知识准备(1~2周)目标:掌握电机控制理论和LKS32MC071开发环境时间安排:每天3~4小时产出目标:✅能够理解PMSM电机的基本工作原理✅熟悉FOC控制方法✅了解无位置传感器控制的原理✅掌握LKS32MC071芯片的基础开发Step1:理解永磁同步电机(PMSM)原理(1-2天)学习内容:•什么是PMSM(永磁同步电机)•PMSM数学模型(d-q轴建模)•三相交流电机的控制方式
- JAVA 你应该有所了解的布隆过滤器
2401_87389661
java开发语言
该篇文章将会使用最精简易懂的文字以及小图来给大家介绍讲解(不对哈希策略计算进行详解)一.布隆过滤器有啥用?二.布隆过滤器原理是什么?三.java中怎么使用布隆过滤器?本篇文章内容可能较多,所以还请耐心。一.布隆过滤器有啥用简单两点叙述:1.存值存值,就是把值存进去,类似于我们很常用的map,set等;2.检验值是否存在检验,也就是我们想知道某个值是否存在于布隆过滤器里面,调用相关的检验方法,我们会
- 【数学 线性代数】差分约束
软件架构师何志丹
#算法基础线性代数c++数学差分约束负环最短路
前言C++算法与数据结构本博文代码打包下载什么是差分约束x系列是变量,y系列是常量,差分系统由若干如下不等式组成。x1-x2classCDisNegativeRing//贝尔曼-福特算法{public:boolDis(intN,vector>edgeFromToW,intstart){vectorpre(N,iDef);pre[start]=0;for(intt=0;tm_vDis;};最长路对应
- 作为普通程序员,我们该如何学习大模型(LLM),学习路线和知识体系
和老莫一起学AI
学习人工智能深度学习语言模型ai程序员转行
前言原谅我的后知后觉,才开始从头写,我是已经上了一阶段大模型的课,也搜集了些资料,并自己做了小部分实践,回过头来,才想开始整理些文章。起初,大家都在写,都在发,我那会在焦虑。自chatgpt爆火以来,AI技术又被广泛关注,国内外各大厂商也纷纷布局,作为我们每一个普通人,也无不时刻感受着AI一波又一波的冲击。尤其是作为程序员的我,相信绝大多数程序员也有和我一样的感受,从一开始的新奇,到焦虑,到试图去
- 【数学基础】第十三课:参数估计
x-jeff
机器学习必备的数学基础机器学习
1.参数估计参数估计是统计推断的一种。根据从总体中抽取的随机样本来估计总体分布中未知参数的过程。从估计形式看,可分为:点估计。区间估计。1.1.参数估计和假设检验参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,但推断的角度不同。参数估计讨论的是用样本统计量估计总体参数的方法,总体参数在估计前是未知的。而在假设检验中,则是先对总体参数值提出一个假设,然后利用样本信息去
- DIFFERENTIAL TRANSFORMER
UnknownBody
LLMDaily深度学习人工智能transformer
本文是LLM系列文章,针对《DIFFERENTIALTRANSFORMER》的翻译。差分Transformer摘要1引言2差分Transformer3实验4结论摘要Transformer倾向于将注意力过度分配到无关的上下文中。在这项工作中,我们引入了DIFFTransformer,它在消除噪声的同时增强了对相关上下文的关注。具体而言,差分注意力机制将注意力得分计算为两个单独的softmax注意力图
- 二值逻辑、三值逻辑到多值逻辑的变迁(含示例)
搏博
人工智能原理算法人工智能机器学习线性代数图像处理数据分析
二值逻辑、三值逻辑到多值逻辑的变迁是一个逻辑体系不断拓展和深化的过程,反映了人们对复杂现象和不确定性问题认识的逐步深入。前文,我们已经探讨过命题逻辑与谓词逻辑,了解了如何用符号语言从浅入深地刻画现实世界。具体可以看我的CSDN文章:人工智能的数学基础之命题逻辑与谓词逻辑(含示例)-CSDN博客人工智能中用到的逻辑可概括地划分为两大类。第一类是经典命题逻辑和一阶谓词逻辑,第二类是泛指除经典逻辑之外的
- springboot整合阿里云短信服务
weixin_45907636
java
短信服务特点现阶段用于验证账号是否为本人使用的手段越来越多,短信服务就是其中一种。由于一般用户的手机号码不会随意改变,所以短信服务是检验使用者是否为用户本人的一种较为安全且有效的方案。短信服务平台一般国内的大型互联网公司都会提供短信服务,例如说阿里云,腾讯云,华为云等,不过由于需要预防短信服务被不法分子用来实施诈骗,很多平台会对个人用户申请短信服务进行限制,需要根据自己备案的网站、应用、域名等进行
- AcWing-差分矩阵
门左有棵树
AcWing算法c++
题目:差分矩阵(二维差分)输入一个n行m列的整数矩阵,再输入q个操作,每个操作包含五个整数x1,y1,x2,y2,c,其中(x1,y1)和(x2,y2)表示一个子矩阵的左上角坐标和右下角坐标。每个操作都要将选中的子矩阵中的每个元素的值加上c。请你将进行完所有操作后的矩阵输出。输入格式第一行包含三个整数n,m,q。接下来n行,每行包含m个整数,表示整数矩阵。接下来q行,每行包含五个整数x1,y1,x
- LVPECL(Low Voltage Positive Emitter-Coupled Logic)电平详解
美好的事情总会发生
电平标准接口电平嵌入式硬件硬件工程智能硬件
一、LVPECL的定义与核心特性LVPECL(低电压正射极耦合逻辑)是PECL(正射极耦合逻辑)的低电压版本,专为现代低功耗、高集成度系统优化,采用3.3V或2.5V供电。其继承了PECL的高速性能,同时通过降低电压减少功耗,广泛应用于高速通信、时钟分配和高可靠性场景。1.电气特性供电电压:3.3V(主流)、2.5V(部分器件)。电平范围:差分摆幅:约600mV(峰峰值),单端摆幅±300mV。共
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- UDS学习计划
正当少年
UDS学习
以下是一份详细的UDS(UnifiedDiagnosticServices,统一诊断服务)学习计划,涵盖从基础到实战的系统化学习路径,适合初学者和有一定基础的开发者。计划周期为6-8周,每周投入10-15小时。第一阶段:基础认知(1周)学习目标理解UDS的基本概念和应用场景掌握UDS协议的核心组成部分熟悉相关工具的使用学习内容UDS概述UDS的定义与作用(ISO14229标准)应用场景:ECU诊断
- MATAB学习笔记2
好大一口果汁
MATLAB学习笔记算法
1.多项式拟合>>p=polyfit(DateNum,Pclose,1);%多项式拟合>>value=p(1)%将斜率赋值给value,作为股票的价值value=0.1212代码分析:%后面的内容是注释,ployfit()有三个参数,第三个参数表示多项式的阶数,也就是最高次数。比如:第三个参数为1,说明为1次项,即一次函数,第三个参数为你要拟合的阶数,一阶直线拟合,二阶抛物线拟合,并非阶次越高越好
- 强化学习:时间差分(TD)(SARSA算法和Q-Learning算法)(看不懂算我输专栏)——手把手教你入门强化学习(六)
wxchyy
强化学习算法
目录前言前期回顾一、SARSA算法二、Q-Learning算法三、总结总结前言 前两期我们介绍了动态规划算法,还有蒙特卡洛算法,不过它们对于状态价值函数的估值都有其缺陷性,像动态规划,需要从最下面向上进行递推,而蒙特克洛则需要一个Episode(回合)结束才能对其进行估值,有没有更直接的方法,智能体能边做动作,边估值一次,不断学习策略?答案是有的。这就是本期需要介绍的算法,时间差分法(TimeDi
- AUTOSAR从入门到精通-汽车电子电气架构(EEA)
格图素书
汽车
目录前言算法原理EEA发展历程->分布式架构(distributed):->基于域的集中式架构(DCUbasedcentralized):->基于域融合的带状架构(DCUfusionbasedzonal):什么是电子电气架构?EEA的特点EEA发展的三大阶段特征第一阶段:分布式架构第二阶段:基于域的集中式架构(转型中)第三阶段:基于域融合的带状架构(未来趋势)车载电子电气架构作用EEA开发工作内容
- PECL(Positive Emitter-Coupled Logic)电平详解
美好的事情总会发生
电平标准接口电平嵌入式硬件硬件工程智能硬件
一、PECL电平的定义与核心特性PECL(正射极耦合逻辑)是一种基于射极耦合逻辑(ECL)技术的高速差分信号标准,采用正电源供电(如5V或3.3V)。其核心特性包括高速传输、低噪声、强抗干扰能力,专为高频、高可靠性场景设计。1.电气特性供电电压:典型值:VCC=5V、3.3V(部分器件支持更宽范围)。电平范围:差分摆幅:约800mV(峰峰值),单端摆幅±400mV。共模电压:VCC-1.3V(如5
- Linux系统crontab定时任务用法详解
驯龙高手_追风
LINUXLinux主机运维linux运维服务器
文章目录1.crontab语法格式示意图2.开机自启命令3.定时执行实例命令4.不生效的可能原因5.执行日志检查方法6.在线配置检验工具参考资料1.crontab语法格式示意图crontab修改方式指令编辑:crontab-e(保存、修改等使用方式同vi命令)列表查看:crontab-l2.开机自启命令开启启动某个命令或脚本@rebootsh/home/start.sh3.定时执行实例命令cron
- 图像拼接-UDIS详细推导和精读Unsupervised Deep Image Stitching: ReconstructingStitched Features to Images
cccc来财
算法计算机视觉深度学习
无监督粗对齐1.基于消融的策略主要是为了找到重叠区,去除无效区2.拼接域的TransformerLayer无监督图像重建1.低分辨率变形单应性变换仅能表示同一深度的空间变换,在实际的图像拼接任务中,由于输入图像的多样性和复杂性,经过第一阶段的粗对齐后,图像往往无法完全对齐。为了让网络能够感知到这些错位区域,特别是在高分辨率和大视差的情况下,设计了低分辨率变形分支,先在低分辨率下对图像进行处理和学习
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 光伏开发:工商业光伏的流程管理全面解析
鹧鸪云光伏与储能软件开发
光伏设计光伏光伏发电新能源分布式
一、项目准备阶段1、资源寻觅与沟通首要任务是寻找适合的工商业屋顶或空地资源,并与业主初步交流,了解其意向、屋顶条件及用电情况。这一阶段的关键在于建立信任关系,为后续工作奠定基础。2、资料收集与核查全面收集业主资料,包括产权证明、建设规划等,确保项目合法性。同时,深入了解屋顶结构、使用年限等关键信息,为后续设计和技术评估提供依据。3、现场踏勘与技术评估实地踏勘确认项目现场情况,结合技术方案测算,评估
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置