多线程

常用的多线程

技术方案 简介 语言 线程生命周期 使用频率
pthread 一套通用的多线程API,适用于Unix\Linux\Windows等系统,跨平台\可移植,使用难度大 C 程序员管理 几乎不用
NSThread 使用更加面向对象,简单易用,可直接操作线程对象 OC 程序员管理 偶尔使用
GCD 旨在替代NSThread等线程技术,充分利用设备的多核 C 自动管理 经常使用
NSOperation 基于GCD(底层是GCD),比GCD多了一些更简单实用的功能,使用更加面向对象 OC 自动管理 经常使用

GCD

GCD中有2个用来执行任务的函数

用同步的方式执行任务

dispatch_sync(dispatch_queue_t queue, dispatch_block_t block);

  • queue:队列
  • block:任务

用异步的方式执行任务

dispatch_async(dispatch_queue_t queue, dispatch_block_t block);

GCD的队列可以分为2大类型

  • 并发队列(Concurrent Dispatch Queue)可以让多个任务并发(同时)执行(自动开启多个线程同时执行任务)并发功能只有在异步(dispatch_async)函数下才有效

  • 串行队列(Serial Dispatch Queue)
    让任务一个接着一个地执行(一个任务执行完毕后,再执行下一个任务)

有4个术语比较容易混淆:同步、异步、并发、串行

  • 同步和异步主要影响:能不能开启新的线程
    同步:在当前线程中执行任务,不具备开启新线程的能力
    异步:在新的线程中执行任务,具备开启新线程的能力

  • 并发和串行主要影响:任务的执行方式
    并发:多个任务并发(同时)执行
    串行:一个任务执行完毕后,再执行下一个任务

各种队列的执行效果.png

- (void)testOne
{
    // 问题:以下代码是在主线程执行的,会不会产生死锁?会!
    NSLog(@"执行任务1");
    
    dispatch_queue_t queue = dispatch_get_main_queue();
    dispatch_sync(queue, ^{
    //等待testOne结束,无法结束导致
        NSLog(@"执行任务2");
    });
    
    NSLog(@"执行任务3");
    
    // dispatch_sync立马在当前线程同步执行任务
}
- (void)testTwo
{
    // 问题:以下代码是在主线程执行的,会不会产生死锁?不会!
    NSLog(@"执行任务1");
    
    dispatch_queue_t queue = dispatch_get_main_queue();
    dispatch_async(queue, ^{
        NSLog(@"执行任务2");
    });
    
    NSLog(@"执行任务3");
    
    // dispatch_async不要求立马在当前线程同步执行任务,等待testTwo执行结束,才会执行异步线程
}
- (void)testThird
{
    // 问题:以下代码是在主线程执行的,会不会产生死锁?会!
    NSLog(@"执行任务1");
    
    dispatch_queue_t queue = dispatch_queue_create("myqueu", DISPATCH_QUEUE_SERIAL);
    dispatch_async(queue, ^{ // 0
        NSLog(@"执行任务2");
        
        dispatch_sync(queue, ^{ // 1
            NSLog(@"执行任务3");
        });
    
        NSLog(@"执行任务4");
    });
    
    NSLog(@"执行任务5"); 
    
    //和主线程的执行类似,会卡死等待上一个任务testThird 的结束,只要在同一个串行队列添加同步线程就会死锁,无论外面是否包裹了异步线程 
}
- (void)testFour
{
    // 问题:以下代码是在主线程执行的,会不会产生死锁?不会!
    NSLog(@"执行任务1");
    
    dispatch_queue_t queue = dispatch_queue_create("myqueu", DISPATCH_QUEUE_SERIAL);
//    dispatch_queue_t queue2 = dispatch_queue_create("myqueu2", DISPATCH_QUEUE_CONCURRENT);
    dispatch_queue_t queue2 = dispatch_queue_create("myqueu2", DISPATCH_QUEUE_SERIAL);
    
    dispatch_async(queue, ^{ // 0
        NSLog(@"执行任务2");
        
        dispatch_sync(queue2, ^{ // 1
            NSLog(@"执行任务3");
        });
        
        NSLog(@"执行任务4");
    });
    
    NSLog(@"执行任务5");
    
    //添加在不同的队列里面,所以即使是串行队列的同步也没有关系
}
- (void)testFive
{
    // 问题:以下代码是在主线程执行的,会不会产生死锁?不会!
    NSLog(@"执行任务1");
    
    dispatch_queue_t queue = dispatch_queue_create("myqueu", DISPATCH_QUEUE_CONCURRENT);
    
    dispatch_async(queue, ^{ // 0
        NSLog(@"执行任务2");
        
        dispatch_sync(queue, ^{ // 1
            NSLog(@"执行任务3");
        });
        
        NSLog(@"执行任务4");
    });
    
    NSLog(@"执行任务5");
    
    //并发队列可以执行多个任务,所以不会阻塞
}

performSelector:withObject:afterDelay:的本质是往Runloop中添加定时器,子线程默认没有启动Runloop

performSelector: withObject:的本质是在RunTime中,相当于objc_msgend方法

- (void)test
{
    dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
    
    dispatch_async(queue, ^{
        NSLog(@"1");
        // 这句代码的本质是往Runloop中添加定时器
        [self performSelector:@selector(test) withObject:nil afterDelay:.0];
        NSLog(@"3");
        
        //        [[NSRunLoop currentRunLoop] addPort:[[NSPort alloc] init] forMode:NSDefaultRunLoopMode];
        [[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode beforeDate:[NSDate distantFuture]];
    });
}
Group
- (void)test {
    // 创建队列组
    dispatch_group_t group = dispatch_group_create();
    // 创建并发队列
    dispatch_queue_t queue = dispatch_queue_create("my_queue", DISPATCH_QUEUE_CONCURRENT);
    
    // 添加异步任务
    dispatch_group_async(group, queue, ^{
        for (int i = 0; i < 5; i++) {
            NSLog(@"任务1-%@", [NSThread currentThread]);
        }
    });
    
    dispatch_group_async(group, queue, ^{
        for (int i = 0; i < 5; i++) {
            NSLog(@"任务2-%@", [NSThread currentThread]);
        }
    });
    
    // 等前面的任务执行完毕后,会自动执行这个任务
//    dispatch_group_notify(group, queue, ^{
//        dispatch_async(dispatch_get_main_queue(), ^{
//            for (int i = 0; i < 5; i++) {
//                NSLog(@"任务3-%@", [NSThread currentThread]);
//            }
//        });
//    });
    
//    dispatch_group_notify(group, dispatch_get_main_queue(), ^{
//        for (int i = 0; i < 5; i++) {
//            NSLog(@"任务3-%@", [NSThread currentThread]);
//        }
//    });
    
    dispatch_group_notify(group, queue, ^{
        for (int i = 0; i < 5; i++) {
            NSLog(@"任务3-%@", [NSThread currentThread]);
        }
    });
    
    dispatch_group_notify(group, queue, ^{
        for (int i = 0; i < 5; i++) {
            NSLog(@"任务4-%@", [NSThread currentThread]);
        }
    });
}
安全隐患
  • 资源共享 1块资源可能会被多个线程共享,也就是多个线程可能会访问同一块资源,比如多个线程访问同一个对象、同一个变量、同一个文件

  • 当多个线程访问同一块资源时,很容易引发数据错乱和数据安全问题

解决方案:使用线程同步技术(同步,就是协同步调,按预定的先后次序进行),常见的线程同步技术是:

OSSpinLock

OSSpinLock叫做”自旋锁”,等待锁的线程会处于忙等(busy-wait)状态,一直占用着CPU资源,目前已经不再安全,可能会出现优先级反转问题,如果等待锁的线程优先级较高,它会一直占用着CPU资源,优先级低的线程就无法释放锁,需要导入头文件#import iOS10之后后不再使用

可以通过尝试加锁及解决线程阻塞

if (OSSpinLockTry(&_lock)) {
    int oldTicketsCount = self.ticketsCount;
    sleep(.2);
    oldTicketsCount--;
    self.ticketsCount = oldTicketsCount;
    NSLog(@"还剩%d张票 - %@", oldTicketsCount, [NSThread currentThread]);

    OSSpinLockUnlock(&_lock);
}

os_unfair_lock

os_unfair_lock用于取代不安全的OSSpinLock ,从iOS10开始才支持,从底层调用看,等待os_unfair_lock锁的线程会处于休眠状态,并非忙等,需要导入头文件#import

os_unfair_lock.png

pthread_mutex

  • mutex叫做”互斥锁”,等待锁的线程会处于休眠状态,需要导入头文件#import

  • mutex根据属性不同,还有一个递归锁,是允许同一个线程递归,如果是两个线程同时调一个方法,第二个线程会等待


    pthread_mutex.png


汇编中调用sysCall之后唤起模拟器,线程休眠了

pthread_mutex 条件

pthread_mutex.png

NSLock、NSRecursiveLock

NSLock是对mutex普通锁的封装


NSLock.png

NSRecursiveLock也是对mutex递归锁的封装,API跟NSLock基本一致

NSCondition

NSCondition是对mutex和cond的封装


NSCondition.png

NSConditionLock

NSConditionLock是对NSCondition的进一步封装,可以设置具体的条件值


NSConditionLock.png

dispatch_semaphore

semaphore叫做”信号量”,信号量的初始值,可以用来控制线程并发访问的最大数量,信号量的初始值为1,代表同时只允许1条线程访问资源,保证线程同步

dispatch_queue(DISPATCH_QUEUE_SERIAL)

直接使用GCD的串行队列,也是可以实现线程同步的

dispatch_semaphore.png

@synchronized

@synchronized是对mutex递归锁的封装

@synchronized(obj)内部会生成obj对应的递归锁,然后进行加锁、解锁操作

synchronized.png

源码查看:objc4中的objc-sync.mm文件

性能比较

性能从高到低排序

  • os_unfair_lock
  • OSSpinLock
  • dispatch_semaphore
  • pthread_mutex
  • dispatch_queue(DISPATCH_QUEUE_SERIAL)
  • NSLock
  • NSCondition
  • pthread_mutex(recursive)
  • NSRecursiveLock
  • NSConditionLock
  • @synchronized
使用场景

什么情况使用自旋锁比较划算?

  • 预计线程等待锁的时间很短
  • 加锁的代码(临界区)经常被调用,但竞争情况很少发生
  • CPU资源不紧张
  • 多核处理器

什么情况使用互斥锁比较划算?

  • 预计线程等待锁的时间较长
  • 单核处理器
  • 临界区有IO操作
  • 临界区代码复杂或者循环量大
  • 临界区竞争非常激烈
atomic

atomic用于保证属性setter、getter的原子性操作,相当于在getter和setter内部加了线程同步的锁,可以参考源码objc4的objc-accessors.mm,

iOS中的读写安全方案

思考如何实现以下场景
同一时间,只能有1个线程进行写的操作
同一时间,允许有多个线程进行读的操作
同一时间,不允许既有写的操作,又有读的操作

上面的场景就是典型的“多读单写”,经常用于文件等数据的读写操作,iOS中的实现方案有
pthread_rwlock:读写锁
dispatch_barrier_async:异步栅栏调用

pthread_rwlock

等待锁的线程会进入休眠


pthread_rwlock.png

dispatch_barrier_async

这个函数传入的并发队列必须是自己通过dispatch_queue_cretate创建的
如果传入的是一个串行或是一个全局的并发队列,那这个函数便等同于dispatch_async函数的效果

dispatch_barrier_async.png

你可能感兴趣的:(多线程)