import torch
import torch.nn as nn
import math
import torch.nn.functional as F
class h_sigmoid(nn.Module):
def __init__(self, inplace=True):
super(h_sigmoid, self).__init__()
self.relu = nn.ReLU6(inplace=inplace)
def forward(self, x):
return self.relu(x + 3) / 6
class h_swish(nn.Module):
def __init__(self, inplace=True):
super(h_swish, self).__init__()
self.sigmoid = h_sigmoid(inplace=inplace)
def forward(self, x):
return x * self.sigmoid(x)
class CoordAtt(nn.Module):
def __init__(self, inp, oup, reduction=32):
super(CoordAtt, self).__init__()
self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
self.pool_w = nn.AdaptiveAvgPool2d((1, None))
mip = max(8, inp // reduction)
self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(mip)
self.act = h_swish()
self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
def forward(self, x):
identity = x
n, c, h, w = x.size()
x_h = self.pool_h(x)
x_w = self.pool_w(x).permute(0, 1, 3, 2)
y = torch.cat([x_h, x_w], dim=2)
y = self.conv1(y)
y = self.bn1(y)
y = self.act(y)
x_h, x_w = torch.split(y, [h, w], dim=2)
x_w = x_w.permute(0, 1, 3, 2)
a_h = self.conv_h(x_h).sigmoid()
a_w = self.conv_w(x_w).sigmoid()
out = identity * a_w * a_h
return out
```python
import torch
from torch import nn
from .CA import CoordAtt
class SiLU(nn.Module):
@staticmethod
def forward(x):
return x * torch.sigmoid(x)
def get_activation(name="silu", inplace=True):
if name == "silu":
module = SiLU()
elif name == "relu":
module = nn.ReLU(inplace=inplace)
elif name == "lrelu":
module = nn.LeakyReLU(0.1, inplace=inplace)
else:
raise AttributeError("Unsupported act type: {}".format(name))
return module
class Focus(nn.Module):
def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu"):
super().__init__()
self.conv = BaseConv(in_channels * 4, out_channels, ksize, stride, act=act)
def forward(self, x):
patch_top_left = x[..., ::2, ::2]
patch_bot_left = x[..., 1::2, ::2]
patch_top_right = x[..., ::2, 1::2]
patch_bot_right = x[..., 1::2, 1::2]
x = torch.cat((patch_top_left, patch_bot_left, patch_top_right, patch_bot_right,), dim=1, )
return self.conv(x)
class BaseConv(nn.Module):
def __init__(self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act="silu"):
super().__init__()
pad = (ksize - 1) // 2
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=ksize, stride=stride, padding=pad, groups=groups,
bias=bias)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.03)
self.act = get_activation(act, inplace=True)
def forward(self, x):
return self.act(self.bn(self.conv(x)))
def fuseforward(self, x):
return self.act(self.conv(x))
class DWConv(nn.Module):
def __init__(self, in_channels, out_channels, ksize, stride=1, act="silu"):
super().__init__()
self.dconv = BaseConv(in_channels, in_channels, ksize=ksize, stride=stride, groups=in_channels, act=act, )
self.pconv = BaseConv(in_channels, out_channels, ksize=1, stride=1, groups=1, act=act)
def forward(self, x):
x = self.dconv(x)
return self.pconv(x)
class SPPBottleneck(nn.Module):
def __init__(self, in_channels, out_channels, kernel_sizes=(5, 9, 13), activation="silu"):
super().__init__()
hidden_channels = in_channels // 2
self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=activation)
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2) for ks in kernel_sizes])
conv2_channels = hidden_channels * (len(kernel_sizes) + 1)
self.conv2 = BaseConv(conv2_channels, out_channels, 1, stride=1, act=activation)
def forward(self, x):
x = self.conv1(x)
x = torch.cat([x] + [m(x) for m in self.m], dim=1)
x = self.conv2(x)
return x
# --------------------------------------------------#
# 残差结构的构建,小的残差结构
# --------------------------------------------------#
class Bottleneck(nn.Module):
# Standard bottleneck
def __init__(self, in_channels, out_channels, shortcut=True, expansion=0.5, depthwise=False, act="silu", ):
super().__init__()
hidden_channels = int(out_channels * expansion)
Conv = DWConv if depthwise else BaseConv
# --------------------------------------------------#
# 利用1x1卷积进行通道数的缩减。缩减率一般是50%
# --------------------------------------------------#
self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
# --------------------------------------------------#
# 利用3x3卷积进行通道数的拓张。并且完成特征提取
# --------------------------------------------------#
self.conv2 = Conv(hidden_channels, out_channels, 3, stride=1, act=act)
self.use_add = shortcut and in_channels == out_channels
def forward(self, x):
y = self.conv2(self.conv1(x))
if self.use_add:
y = y + x
return y
class AttentionCSPLayer(nn.Module):
def __init__(self, in_channels, out_channels, n=1, shortcut=True, expansion=0.5, depthwise=False, act="silu", ):
# ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
hidden_channels = int(out_channels * expansion)
# --------------------------------------------------#
# 主干部分的初次卷积
# --------------------------------------------------#
self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
# --------------------------------------------------#
# 大的残差边部分的初次卷积
# --------------------------------------------------#
self.conv2 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
# -----------------------------------------------#
# 对堆叠的结果进行卷积的处理
# -----------------------------------------------#
self.conv3 = BaseConv(2 * hidden_channels, out_channels, 1, stride=1, act=act)
# --------------------------------------------------#
# 根据循环的次数构建上述Bottleneck残差结构
# --------------------------------------------------#
module_list = [Bottleneck(hidden_channels, hidden_channels, shortcut, 1.0, depthwise, act=act) for _ in
range(n)] + [CoordAtt(inp=hidden_channels, oup=hidden_channels)]
self.m = nn.Sequential(*module_list)
# print(module_list)
# self.CoordAtt = CoordAtt(inp=hidden_channels, oup=hidden_channels)
def forward(self, x):
# -------------------------------#
# x_1是主干部分
# -------------------------------#
x_1 = self.conv1(x)
# -------------------------------#
# x_2是大的残差边部分
# -------------------------------#
x_2 = self.conv2(x)
# -----------------------------------------------#
# 主干部分利用残差结构堆叠继续进行特征提取
# -----------------------------------------------#
x_1 = self.m(x_1)
# -----------------------------------------------#
# 主干部分和大的残差边部分进行堆叠
# -----------------------------------------------#
x = torch.cat((x_1, x_2), dim=1)
# -----------------------------------------------#
# 对堆叠的结果进行卷积的处理
# -----------------------------------------------#
return self.conv3(x)
class CSPLayer(nn.Module):
def __init__(self, in_channels, out_channels, n=1, shortcut=True, expansion=0.5, depthwise=False, act="silu", ):
# ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
hidden_channels = int(out_channels * expansion)
# --------------------------------------------------#
# 主干部分的初次卷积
# --------------------------------------------------#
self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
# --------------------------------------------------#
# 大的残差边部分的初次卷积
# --------------------------------------------------#
self.conv2 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
# -----------------------------------------------#
# 对堆叠的结果进行卷积的处理
# -----------------------------------------------#
self.conv3 = BaseConv(2 * hidden_channels, out_channels, 1, stride=1, act=act)
# --------------------------------------------------#
# 根据循环的次数构建上述Bottleneck残差结构
# --------------------------------------------------#
module_list = [Bottleneck(hidden_channels, hidden_channels, shortcut, 1.0, depthwise, act=act) for _ in
range(n)]
self.m = nn.Sequential(*module_list)
def forward(self, x):
# -------------------------------#
# x_1是主干部分
# -------------------------------#
x_1 = self.conv1(x)
# -------------------------------#
# x_2是大的残差边部分
# -------------------------------#
x_2 = self.conv2(x)
# -----------------------------------------------#
# 主干部分利用残差结构堆叠继续进行特征提取
# -----------------------------------------------#
x_1 = self.m(x_1)
# -----------------------------------------------#
# 主干部分和大的残差边部分进行堆叠
# -----------------------------------------------#
x = torch.cat((x_1, x_2), dim=1)
# -----------------------------------------------#
# 对堆叠的结果进行卷积的处理
# -----------------------------------------------#
return self.conv3(x)
class CSPDarknet(nn.Module):
def __init__(self, dep_mul, wid_mul, out_features=("dark3", "dark4", "dark5"), depthwise=False, act="silu", ):
super().__init__()
assert out_features, "please provide output features of Darknet"
self.out_features = out_features
Conv = DWConv if depthwise else BaseConv
# -----------------------------------------------#
# 输入图片是640, 640, 3
# 初始的基本通道是64
# -----------------------------------------------#
base_channels = int(wid_mul * 64) # 64
base_depth = max(round(dep_mul * 3), 1) # 3
# -----------------------------------------------#
# 利用focus网络结构进行特征提取
# 640, 640, 3 -> 320, 320, 12 -> 320, 320, 64
# -----------------------------------------------#
self.stem = Focus(3, base_channels, ksize=3, act=act)
# -----------------------------------------------#
# 完成卷积之后,320, 320, 64 -> 160, 160, 128
# 完成CSPlayer之后,160, 160, 128 -> 160, 160, 128
# -----------------------------------------------#
self.dark2 = nn.Sequential(
Conv(base_channels, base_channels * 2, 3, 2, act=act),
CSPLayer(base_channels * 2, base_channels * 2, n=base_depth, depthwise=depthwise, act=act),
)
# -----------------------------------------------#
# 完成卷积之后,160, 160, 128 -> 80, 80, 256
# 完成CSPlayer之后,80, 80, 256 -> 80, 80, 256
# -----------------------------------------------#
self.dark3 = nn.Sequential(
Conv(base_channels * 2, base_channels * 4, 3, 2, act=act),
AttentionCSPLayer(base_channels * 4, base_channels * 4, n=base_depth * 3, depthwise=depthwise, act=act),
# CoordAtt(inp=base_channels * 4, oup=base_channels * 4),
)
# -----------------------------------------------#
# 完成卷积之后,80, 80, 256 -> 40, 40, 512
# 完成CSPlayer之后,40, 40, 512 -> 40, 40, 512
# -----------------------------------------------#
self.dark4 = nn.Sequential(
Conv(base_channels * 4, base_channels * 8, 3, 2, act=act),
AttentionCSPLayer(base_channels * 8, base_channels * 8, n=base_depth * 3, depthwise=depthwise, act=act),
# CoordAtt(inp=base_channels * 8, oup=base_channels * 8),
)
# -----------------------------------------------#
# 完成卷积之后,40, 40, 512 -> 20, 20, 1024
# 完成SPP之后,20, 20, 1024 -> 20, 20, 1024
# 完成CSPlayer之后,20, 20, 1024 -> 20, 20, 1024
# -----------------------------------------------#
self.dark5 = nn.Sequential(
Conv(base_channels * 8, base_channels * 16, 3, 2, act=act),
SPPBottleneck(base_channels * 16, base_channels * 16, activation=act),
AttentionCSPLayer(base_channels * 16, base_channels * 16, n=base_depth, shortcut=False, depthwise=depthwise,
act=act),
# CoordAtt(inp=base_channels * 16, oup=base_channels * 16),
)
def forward(self, x):
outputs = {}
x = self.stem(x)
outputs["stem"] = x
x = self.dark2(x)
outputs["dark2"] = x
# -----------------------------------------------#
# dark3的输出为80, 80, 256,是一个有效特征层
# -----------------------------------------------#
x = self.dark3(x)
outputs["dark3"] = x
# -----------------------------------------------#
# dark4的输出为40, 40, 512,是一个有效特征层
# -----------------------------------------------#
x = self.dark4(x)
outputs["dark4"] = x
# -----------------------------------------------#
# dark5的输出为20, 20, 1024,是一个有效特征层
# -----------------------------------------------#
x = self.dark5(x)
outputs["dark5"] = x
return {k: v for k, v in outputs.items() if k in self.out_features}
if __name__ == '__main__':
print(CSPDarknet(1, 1))
============================================================================================================
专做目标检测算法,YOLOv5、YOLOX模型更改需要可私信博主,小偿。