YOLOX添加CA坐标注意力机制

YOLOX添加CA坐标注意力机制

    • 1. 在nets文件夹中新建CA.py
    • 2. 更改nets文件夹中darknet.py

1. 在nets文件夹中新建CA.py

import torch
import torch.nn as nn
import math
import torch.nn.functional as F


class h_sigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)

    def forward(self, x):
        return self.relu(x + 3) / 6


class h_swish(nn.Module):
    def __init__(self, inplace=True):
        super(h_swish, self).__init__()
        self.sigmoid = h_sigmoid(inplace=inplace)

    def forward(self, x):
        return x * self.sigmoid(x)


class CoordAtt(nn.Module):
    def __init__(self, inp, oup, reduction=32):
        super(CoordAtt, self).__init__()
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))

        mip = max(8, inp // reduction)

        self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(mip)
        self.act = h_swish()

        self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
        self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        identity = x

        n, c, h, w = x.size()
        x_h = self.pool_h(x)
        x_w = self.pool_w(x).permute(0, 1, 3, 2)

        y = torch.cat([x_h, x_w], dim=2)
        y = self.conv1(y)
        y = self.bn1(y)
        y = self.act(y)

        x_h, x_w = torch.split(y, [h, w], dim=2)
        x_w = x_w.permute(0, 1, 3, 2)

        a_h = self.conv_h(x_h).sigmoid()
        a_w = self.conv_w(x_w).sigmoid()

        out = identity * a_w * a_h

        return out

2. 更改nets文件夹中darknet.py


```python
import torch
from torch import nn
from .CA import CoordAtt


class SiLU(nn.Module):
    @staticmethod
    def forward(x):
        return x * torch.sigmoid(x)


def get_activation(name="silu", inplace=True):
    if name == "silu":
        module = SiLU()
    elif name == "relu":
        module = nn.ReLU(inplace=inplace)
    elif name == "lrelu":
        module = nn.LeakyReLU(0.1, inplace=inplace)
    else:
        raise AttributeError("Unsupported act type: {}".format(name))
    return module


class Focus(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu"):
        super().__init__()
        self.conv = BaseConv(in_channels * 4, out_channels, ksize, stride, act=act)

    def forward(self, x):
        patch_top_left = x[..., ::2, ::2]
        patch_bot_left = x[..., 1::2, ::2]
        patch_top_right = x[..., ::2, 1::2]
        patch_bot_right = x[..., 1::2, 1::2]
        x = torch.cat((patch_top_left, patch_bot_left, patch_top_right, patch_bot_right,), dim=1, )
        return self.conv(x)


class BaseConv(nn.Module):
    def __init__(self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act="silu"):
        super().__init__()
        pad = (ksize - 1) // 2
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=ksize, stride=stride, padding=pad, groups=groups,
                              bias=bias)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.03)
        self.act = get_activation(act, inplace=True)

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def fuseforward(self, x):
        return self.act(self.conv(x))


class DWConv(nn.Module):
    def __init__(self, in_channels, out_channels, ksize, stride=1, act="silu"):
        super().__init__()
        self.dconv = BaseConv(in_channels, in_channels, ksize=ksize, stride=stride, groups=in_channels, act=act, )
        self.pconv = BaseConv(in_channels, out_channels, ksize=1, stride=1, groups=1, act=act)

    def forward(self, x):
        x = self.dconv(x)
        return self.pconv(x)


class SPPBottleneck(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_sizes=(5, 9, 13), activation="silu"):
        super().__init__()
        hidden_channels = in_channels // 2
        self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=activation)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2) for ks in kernel_sizes])
        conv2_channels = hidden_channels * (len(kernel_sizes) + 1)
        self.conv2 = BaseConv(conv2_channels, out_channels, 1, stride=1, act=activation)

    def forward(self, x):
        x = self.conv1(x)
        x = torch.cat([x] + [m(x) for m in self.m], dim=1)
        x = self.conv2(x)
        return x


# --------------------------------------------------#
#   残差结构的构建,小的残差结构
# --------------------------------------------------#
class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, in_channels, out_channels, shortcut=True, expansion=0.5, depthwise=False, act="silu", ):
        super().__init__()
        hidden_channels = int(out_channels * expansion)
        Conv = DWConv if depthwise else BaseConv
        # --------------------------------------------------#
        #   利用1x1卷积进行通道数的缩减。缩减率一般是50%
        # --------------------------------------------------#
        self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
        # --------------------------------------------------#
        #   利用3x3卷积进行通道数的拓张。并且完成特征提取
        # --------------------------------------------------#
        self.conv2 = Conv(hidden_channels, out_channels, 3, stride=1, act=act)
        self.use_add = shortcut and in_channels == out_channels

    def forward(self, x):
        y = self.conv2(self.conv1(x))
        if self.use_add:
            y = y + x
        return y


class AttentionCSPLayer(nn.Module):
    def __init__(self, in_channels, out_channels, n=1, shortcut=True, expansion=0.5, depthwise=False, act="silu", ):
        # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        hidden_channels = int(out_channels * expansion)
        # --------------------------------------------------#
        #   主干部分的初次卷积
        # --------------------------------------------------#
        self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
        # --------------------------------------------------#
        #   大的残差边部分的初次卷积
        # --------------------------------------------------#
        self.conv2 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
        # -----------------------------------------------#
        #   对堆叠的结果进行卷积的处理
        # -----------------------------------------------#
        self.conv3 = BaseConv(2 * hidden_channels, out_channels, 1, stride=1, act=act)

        # --------------------------------------------------#
        #   根据循环的次数构建上述Bottleneck残差结构
        # --------------------------------------------------#
        module_list = [Bottleneck(hidden_channels, hidden_channels, shortcut, 1.0, depthwise, act=act) for _ in
                       range(n)] + [CoordAtt(inp=hidden_channels, oup=hidden_channels)]
        self.m = nn.Sequential(*module_list)
        # print(module_list)
        # self.CoordAtt = CoordAtt(inp=hidden_channels, oup=hidden_channels)

    def forward(self, x):
        # -------------------------------#
        #   x_1是主干部分
        # -------------------------------#
        x_1 = self.conv1(x)
        # -------------------------------#
        #   x_2是大的残差边部分
        # -------------------------------#
        x_2 = self.conv2(x)

        # -----------------------------------------------#
        #   主干部分利用残差结构堆叠继续进行特征提取
        # -----------------------------------------------#
        x_1 = self.m(x_1)

        # -----------------------------------------------#
        #   主干部分和大的残差边部分进行堆叠
        # -----------------------------------------------#
        x = torch.cat((x_1, x_2), dim=1)
        # -----------------------------------------------#
        #   对堆叠的结果进行卷积的处理
        # -----------------------------------------------#
        return self.conv3(x)


class CSPLayer(nn.Module):
    def __init__(self, in_channels, out_channels, n=1, shortcut=True, expansion=0.5, depthwise=False, act="silu", ):
        # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        hidden_channels = int(out_channels * expansion)
        # --------------------------------------------------#
        #   主干部分的初次卷积
        # --------------------------------------------------#
        self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
        # --------------------------------------------------#
        #   大的残差边部分的初次卷积
        # --------------------------------------------------#
        self.conv2 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
        # -----------------------------------------------#
        #   对堆叠的结果进行卷积的处理
        # -----------------------------------------------#
        self.conv3 = BaseConv(2 * hidden_channels, out_channels, 1, stride=1, act=act)

        # --------------------------------------------------#
        #   根据循环的次数构建上述Bottleneck残差结构
        # --------------------------------------------------#
        module_list = [Bottleneck(hidden_channels, hidden_channels, shortcut, 1.0, depthwise, act=act) for _ in
                       range(n)]
        self.m = nn.Sequential(*module_list)

    def forward(self, x):
        # -------------------------------#
        #   x_1是主干部分
        # -------------------------------#
        x_1 = self.conv1(x)
        # -------------------------------#
        #   x_2是大的残差边部分
        # -------------------------------#
        x_2 = self.conv2(x)

        # -----------------------------------------------#
        #   主干部分利用残差结构堆叠继续进行特征提取
        # -----------------------------------------------#
        x_1 = self.m(x_1)

        # -----------------------------------------------#
        #   主干部分和大的残差边部分进行堆叠
        # -----------------------------------------------#
        x = torch.cat((x_1, x_2), dim=1)
        # -----------------------------------------------#
        #   对堆叠的结果进行卷积的处理
        # -----------------------------------------------#
        return self.conv3(x)


class CSPDarknet(nn.Module):
    def __init__(self, dep_mul, wid_mul, out_features=("dark3", "dark4", "dark5"), depthwise=False, act="silu", ):
        super().__init__()
        assert out_features, "please provide output features of Darknet"
        self.out_features = out_features
        Conv = DWConv if depthwise else BaseConv

        # -----------------------------------------------#
        #   输入图片是640, 640, 3
        #   初始的基本通道是64
        # -----------------------------------------------#
        base_channels = int(wid_mul * 64)  # 64
        base_depth = max(round(dep_mul * 3), 1)  # 3

        # -----------------------------------------------#
        #   利用focus网络结构进行特征提取
        #   640, 640, 3 -> 320, 320, 12 -> 320, 320, 64
        # -----------------------------------------------#
        self.stem = Focus(3, base_channels, ksize=3, act=act)

        # -----------------------------------------------#
        #   完成卷积之后,320, 320, 64 -> 160, 160, 128
        #   完成CSPlayer之后,160, 160, 128 -> 160, 160, 128
        # -----------------------------------------------#
        self.dark2 = nn.Sequential(
            Conv(base_channels, base_channels * 2, 3, 2, act=act),
            CSPLayer(base_channels * 2, base_channels * 2, n=base_depth, depthwise=depthwise, act=act),
        )

        # -----------------------------------------------#
        #   完成卷积之后,160, 160, 128 -> 80, 80, 256
        #   完成CSPlayer之后,80, 80, 256 -> 80, 80, 256
        # -----------------------------------------------#
        self.dark3 = nn.Sequential(
            Conv(base_channels * 2, base_channels * 4, 3, 2, act=act),
            AttentionCSPLayer(base_channels * 4, base_channels * 4, n=base_depth * 3, depthwise=depthwise, act=act),
            # CoordAtt(inp=base_channels * 4, oup=base_channels * 4),
        )

        # -----------------------------------------------#
        #   完成卷积之后,80, 80, 256 -> 40, 40, 512
        #   完成CSPlayer之后,40, 40, 512 -> 40, 40, 512
        # -----------------------------------------------#
        self.dark4 = nn.Sequential(
            Conv(base_channels * 4, base_channels * 8, 3, 2, act=act),
            AttentionCSPLayer(base_channels * 8, base_channels * 8, n=base_depth * 3, depthwise=depthwise, act=act),
            # CoordAtt(inp=base_channels * 8, oup=base_channels * 8),
        )

        # -----------------------------------------------#
        #   完成卷积之后,40, 40, 512 -> 20, 20, 1024
        #   完成SPP之后,20, 20, 1024 -> 20, 20, 1024
        #   完成CSPlayer之后,20, 20, 1024 -> 20, 20, 1024
        # -----------------------------------------------#
        self.dark5 = nn.Sequential(
            Conv(base_channels * 8, base_channels * 16, 3, 2, act=act),
            SPPBottleneck(base_channels * 16, base_channels * 16, activation=act),
            AttentionCSPLayer(base_channels * 16, base_channels * 16, n=base_depth, shortcut=False, depthwise=depthwise,
                              act=act),
            # CoordAtt(inp=base_channels * 16, oup=base_channels * 16),
        )

    def forward(self, x):
        outputs = {}
        x = self.stem(x)
        outputs["stem"] = x
        x = self.dark2(x)
        outputs["dark2"] = x
        # -----------------------------------------------#
        #   dark3的输出为80, 80, 256,是一个有效特征层
        # -----------------------------------------------#
        x = self.dark3(x)
        outputs["dark3"] = x

        # -----------------------------------------------#
        #   dark4的输出为40, 40, 512,是一个有效特征层
        # -----------------------------------------------#
        x = self.dark4(x)

        outputs["dark4"] = x

        # -----------------------------------------------#
        #   dark5的输出为20, 20, 1024,是一个有效特征层
        # -----------------------------------------------#
        x = self.dark5(x)

        outputs["dark5"] = x

        return {k: v for k, v in outputs.items() if k in self.out_features}


if __name__ == '__main__':
    print(CSPDarknet(1, 1))

============================================================================================================

专做目标检测算法,YOLOv5、YOLOX模型更改需要可私信博主,小偿。

你可能感兴趣的:(python,python,深度学习,pytorch)