Python TensorFlow框架 实现手写数字识别系统

                                   
      

手写数字识别算法的设计与实现

本文使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。这是本人的本科毕业论文课题,当然,这个也是机器学习的基本问题。本博文不会以论文的形式展现,而是以编程实战完成机器学习项目的角度去描述。


项目要求:本文主要解决的问题是手写数字识别,最终要完成一个识别系统。

设计识别率高的算法,实现快速识别的系统。

1 LeNet-5模型的介绍

本文实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:
在这里插入图片描述
这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。

如果你觉得这篇文章看起来稍微还有些吃力,或者想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作,教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。

LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。

LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。

第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。

S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-pooling,LeNet-5采用的是mean-pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。

S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。

S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。

C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。

F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。

卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。

2 手写数字识别算法模型的构建

2.1 各层设计

有了第一节的基础知识,在这基础上,进行完善和改进。

输入层设计

输入为28×28的矩阵,而不是向量。

激活函数的选取

Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。

ReLU的表达式:
在这里插入图片描述

卷积层设计

本文设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。

降采样层

本文降采样层的pooling方式是max-pooling,大小为2×2。

输出层设计

输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:
在这里插入图片描述

2.2 网络模型的总体结构

在这里插入图片描述
其实,本文网络的构建,参考自TensorFlow的手写数字识别的官方教程的,读者有兴趣也可以详细阅读。

2.3 编程实现算法

本文使用Python,调用TensorFlow的api完成手写数字识别的算法。
注:本文程序运行环境是:Win10,python3.5.2。当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。

#!/usr/bin/env python2# -*- coding: utf-8 -*-"""Created on Fri Feb 17 19:50:49 2017@author: Yonghao Huang"""#import modulesimport numpy as npimport matplotlib.pyplot as pltimport tensorflow as tfimport timefrom datetime import timedeltaimport mathfrom tensorflow.examples.tutorials.mnist import input_datadef new_weights(shape):    return tf.Variable(tf.truncated_normal(shape,stddev=0.05))def new_biases(length):    return tf.Variable(tf.constant(0.1,shape=length))def conv2d(x,W):    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')def max_pool_2x2(inputx):    return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')#import datadata = input_data.read_data_sets("./data", one_hot=True)  # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2print("Size of:")print("--Training-set:\t\t{}".format(len(data.train.labels)))print("--Testing-set:\t\t{}".format(len(data.test.labels)))print("--Validation-set:\t\t{}".format(len(data.validation.labels)))data.test.cls = np.argmax(data.test.labels,axis=1)   # show the real test labels:  [7 2 1 ..., 4 5 6], 10000valuesx = tf.placeholder("float",shape=[None,784],name='x')x_image = tf.reshape(x,[-1,28,28,1])y_true = tf.placeholder("float",shape=[None,10],name='y_true')y_true_cls = tf.argmax(y_true,dimension=1)# Conv 1layer_conv1 = {"weights":new_weights([5,5,1,32]),               "biases":new_biases([32])}h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"])h_pool1 = max_pool_2x2(h_conv1)# Conv 2layer_conv2 = {"weights":new_weights([5,5,32,64]),               "biases":new_biases([64])}h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"])h_pool2 = max_pool_2x2(h_conv2)# Full-connected layer 1fc1_layer = {"weights":new_weights([7*7*64,1024]),            "biases":new_biases([1024])}h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"])# Droupout Layerkeep_prob = tf.placeholder("float")h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)# Full-connected layer 2fc2_layer = {"weights":new_weights([1024,10]),             "biases":new_weights([10])}# Predicted classy_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"])  # The output is like [0 0 1 0 0 0 0 0 0 0]y_pred_cls = tf.argmax(y_pred,dimension=1)  # Show the real predict number like '2'# cost function to be optimizedcross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)# Performance Measurescorrect_prediction = tf.equal(y_pred_cls,y_true_cls)accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))with tf.Session() as sess:    init = tf.global_variables_initializer()    sess.run(init)    train_batch_size = 50    def optimize(num_iterations):        total_iterations=0        start_time = time.time()        for i in range(total_iterations,total_iterations+num_iterations):            x_batch,y_true_batch = data.train.next_batch(train_batch_size)            feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}            feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}            sess.run(optimizer,feed_dict=feed_dict_train_op)            # Print status every 100 iterations.            if i%100==0:                # Calculate the accuracy on the training-set.                acc = sess.run(accuracy,feed_dict=feed_dict_train)                # Message for printing.                msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}"                # Print it.                print(msg.format(i+1,acc))        # Update the total number of iterations performed        total_iterations += num_iterations        # Ending time        end_time = time.time()        # Difference between start and end_times.        time_dif = end_time-start_time        # Print the time-usage        print("Time usage:"+str(timedelta(seconds=int(round(time_dif)))))    test_batch_size = 256    def print_test_accuracy():        # Number of images in the test-set.        num_test = len(data.test.images)        cls_pred = np.zeros(shape=num_test,dtype=np.int)        i = 0        while i < num_test:            # The ending index for the next batch is denoted j.            j = min(i+test_batch_size,num_test)            # Get the images from the test-set between index i and j            images = data.test.images[i:j, :]            # Get the associated labels            labels = data.test.labels[i:j, :]            # Create a feed-dict with these images and labels.            feed_dict={x:images,y_true:labels,keep_prob:1.0}            # Calculate the predicted class using Tensorflow.            cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)            # Set the start-index for the next batch to the            # end-index of the current batch            i = j        cls_true = data.test.cls        correct = (cls_true==cls_pred)        correct_sum = correct.sum()        acc = float(correct_sum) / num_test        # Print the accuracy        msg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"        print(msg.format(acc,correct_sum,num_test))    # Performance after 10000 optimization iterations            
  
    
    
    
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130

    运行结果显示:测试集中准确率大概为99.2%。
    我还写了一些辅助函数,可以查看部分识别错误的图片,
    在这里插入图片描述
    还可以查看混淆矩阵,
    在这里插入图片描述

    2.3 实现手写识别系统

    最后,将训练好的参数保存,封装进一个GUI界面中,形成一个手写识别系统。
    在这里插入图片描述
    系统中还添加了一点图像预处理的操作,比如灰度化,图像信息的归一化等,更贴近实际应用。
    系统可进行快速识别,如下图:
    在这里插入图片描述

    3 总结

    本文实现的系统其实是基于卷积神经网络的手写数字识别系统。该系统能快速实现手写数字识别,成功识别率高。缺点:只能正确识别单个数字,图像预处理还不够,没有进行图像分割,读者也可以自行添加,进行完善。

    4 收获

    本人之前的本科期间,虽然努力学习高数、线性代数和概率论,但是没有认真学习过机器学习,本人是2017年才开始系统学习机器学习相关知识,而且本科毕业论文也选择了相关的课题,虽然比较基础,但是认真完成后,有一种学以致用的满足感,同时也激励着我进行更深入的理论学习和实践探讨,与所有读者共勉。

    ==================================

    2018年5月13日更新

    源码分享链接:链接: https://pan.baidu.com/s/1BItkfd1bW-hJQaXzzQ3sVQ 提取码: spbv


    ========================================

    2018年6月6日更新更新!!

    python(TensorFlow)实现手写字符识别


    此处的“手写字符”,其实指的是notMNIST数据库中的手写字符,其实和MNIST数据库是一样的。这里实现手写字符识别,主要是展示TensorFlow框架的可拓展性很强,具体来说,就是可以通过改动少部分的代码,从而实现一个新的识别功能。

    NotMnist数据库

    这个数据库和MNIST数据库基本一样,只是把10个数字换成了10个字母,即:A,B,C,D,E,F,G,H,I,J,K
    当然,这个数据库的识别难度大一些,因为数据噪声更多一些,详情读者可以搜一搜了解一下。

    实战

    将NotMNIST数据库下载以后,放在本博文上述的网络中,基本不需要修改代码,直接训练,即可得到一个能识别字符的网络模型。

    最后在测试集中的准确率,比MNIST的会低一些,大概为96%左右。

    本文也将训练好的网络模型封装在和上述系统相似的GUI系统中,



    识别效果还可以!

    同样,将卷积卷积层可视化。


    结语

    TensorFlow框架可拓展性很强,只要设计好了网络,就能很容易的实现出来;同时,使用基本的CNN识别整体架构也是大同小异的,很多识别任务是通用的。当然,在具体的实践中需要得到接近完美的效果,还是要下很大功夫的!努力学习吧,加油!
    (如果你/您有什么有趣的想法,可以在下面留言,如果我也感兴趣同时又有时间的话,我会尝试做一做,_

                         

    你可能感兴趣的:(Python TensorFlow框架 实现手写数字识别系统)