一个简单的CNN网络,做个小练习。
不管是复杂的网络还是简单的网络,代码的结构都大同小异。从小的网络开始,加油!
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
# ---------构建网络----------
# input: datasets
#
# return: predicted (tensor batch size * 10)
#
# 1. conv + relu + max pooling
# 2. conv + relu + max pooling
# 3. FC + FC + log softmax
# ---------------------------
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1 , 20 , 5)
self.conv2 = nn.Conv2d(20 , 50 , 5)
self.FC1 = nn.Linear(50 * 4 * 4, 500)
self.FC2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(x.shape[0], 4 * 4 * 50)
x = F.relu(self.FC1(x))
x = self.FC2(x)
return F.log_softmax(x, dim=1)
# 下载MNIST数据集
# mnist_data = datasets.MNIST('./mnist_data', train=True, transform=transforms.Compose(
# [transforms.ToTensor(), ]
# ))
#定义训练过程
def train(model, device, train_data, optimizer, epoch):
for idx, (data, target) in enumerate(train_data):
data, target = data.to(device), target.to(device)
pred = model(data)
loss = F.nll_loss(pred, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if idx % 100 == 0:
print(f'Epoch: {epoch} , Iteration: {idx}, Loss: {loss.item()}')
# 定义测试过程
def test(model, device, test_data):
total_loss = 0.
correct = 0.
with torch.no_grad():
for idx, (data, target) in enumerate(test_data):
data, target = data.to(device), target.to(device)
output = model(data)
total_loss += F.nll_loss(output, target, reduction='mean').item()
pred = output.argmax(dim = 1)
correct += pred.eq(target.view_as(pred)).sum().item()
total_loss /= len(test_data.dataset)
acc = correct / len(test_data.dataset)
print(f'Test Loss: {total_loss} Accuracy: {acc:.2%}')
# 选择device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 定义训练集
batch_size = 32
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./mnist_data', train = True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size = batch_size,
shuffle = True,
num_workers = 0,
pin_memory = True
)
# 定义测试集
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./mnist_data', train = False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)
)])),
batch_size = batch_size,
shuffle = True,
num_workers = 0,
pin_memory = True
)
# 主要参数
lr = 0.01
momentum = 0.5
model = Net().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr = lr, momentum = momentum)
num_epoch = 2
if __name__ == "__main__":
for epoch in range(num_epoch):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
# save
torch.save(model.state_dict(), 'mnist_cnn.pt')