python中ix用法_Python Pandas DataFrame.ix[ ]用法及代码示例

Python是进行数据分析的一种出色语言,主要是因为以数据为中心的Python软件包具有奇妙的生态系统。 Pandas是其中的一种,使导入和分析数据更加容易。

Pandas DataFrame.ix[ ]是基于Label和Integer的切片技术。除了基于纯标签和基于整数的方法外,Pandas还提供了一种混合方法,用于选择和设置对象的子集。ix[]操作员。ix[]是最通用的索引器,将支持

用法: DataFrame.ix[ ]

参数:

索引位置:行在整数或整数列表中的索引位置。

索引标签:行的索引标签的字符串或字符串列表

返回: DataFrame 或系列取决于参数

代码1:

# importing pandas package

import pandas as geek

# making data frame from csv file

data = geek.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv")

# Integer slicing

print("Slicing only rows(till index 4):")

x1 = data.ix[:4, ]

print(x1, "\n")

print("Slicing rows and columns(rows=4, col 1-4, excluding 4):")

x2 = data.ix[:4, 1:4]

print(x2)

输出:

代码2:

# importing pandas package

import pandas as geek

# making data frame from csv file

data = geek.read_csv("nba.csv")

# Index slicing on Height column

print("After index slicing:")

x1 = data.ix[10:20, 'Height']

print(x1, "\n")

# Index slicing on Salary column

x2 = data.ix[10:20, 'Salary']

print(x2)

输出:

代码3:

# importing pandas and numpy

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(10, 4),

columns = ['A', 'B', 'C', 'D'])

print("Original DataFrame:\n" , df)

# Integer slicing

print("\n Slicing only rows:")

print("--------------------------")

x1 = df.ix[:4, ]

print(x1)

print("\n Slicing rows and columns:")

print("----------------------------")

x2 = df.ix[:4, 1:3]

print(x2)

输出:

代码4:

# importing pandas and numpy

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(10, 4),

columns = ['A', 'B', 'C', 'D'])

print("Original DataFrame:\n" , df)

# Integer slicing (printing all the rows of column 'A')

print("\n After index slicing (On 'A'):")

print("--------------------------")

x = df.ix[:, 'A']

print(x)

输出:

你可能感兴趣的:(python中ix用法)