- 使用 Shiro 和 JPA 结合 MySQL 实现一个简易权限管理系统
Java猿_
mysql数据库
1.项目设置首先,确保你的项目已经配置好Maven或Gradle依赖管理工具,并添加以下依赖:Maven依赖org.apache.shiroshiro-core1.9.0org.apache.shiroshiro-web1.9.0org.springframework.bootspring-boot-starter-data-jpamysqlmysql-connector-java8.0.26or
- 【LLM】大模型基础--大规模预训练语言模型的开源教程笔记
Langchain
笔记人工智能langchainllama大模型产品经理大模型基础
1.引言本文以DataWhale大模型开源教程为学习路线,进行一整个大模型的入门操作什么是语言模型语言模型是一种对词元序列(token)的概率分布,可以用于评估文本序列的合理性并生成新的文本。从生成文本的方式来看,LM(languagemodle)可以简单的分为:自回归模型非自回归模型特点逐字生成文本,每个词的生成都依赖于上文,关联性好一次性生成整个文本序列,不捕捉上文信息优点内容质量高生成速度快
- AIMv2:多模态自回归预训练的视觉新突破
人工智能
AIMv2:多模态自回归预训练的视觉新突破阅读时长:19分钟发布时间:2025-02-17近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】导言视觉模型在人工智能领域的地位愈发重要,从图像识别、目标检测到多模态理解,其应用场景不断拓展。在大规模数据集上进行预训练,能助力模型学习丰富的视觉特
- 一个简易的 Vue-Ref 响应式系统
简易的Ref数据响应式+Renderer渲染器本案例实现的响应式效果非常有限,只做简单的demo演示,本案例既不是基于Object.defineProperty,也不是基于Proxy实现的响应式,而是基于存取器,其实都差不多。准备一个__Ref__,它可以将简单数据类型包装为一个响应式对象。class__Ref{#privateValue;#privateRely;//"桶"收集所有对#priva
- Lua简易入门
阳光下的
Lua脚本语法说明(修订)Lua脚本语法说明(增加lua5.1部份特性)Lua的语法比较简单,学习起来也比较省力,但功能却并不弱。所以,我只简单的归纳一下Lua的一些语法规则,使用起来方便好查就可以了。估计看完了,就懂得怎么写Lua程序了。在Lua中,一切都是变量,除了关键字。I.首先是注释写一个程序,总是少不了注释的。在Lua中,你可以使用单行注释和多行注释。单行注释中,连续两个减号"--"表示
- 机器学习 - 学习线性模型的重要性
谦亨有终
跟着AI向前走机器学习学习人工智能
在接下来的博文中,我们将重点学习线性模型的回归模型和分类模型,在学习之前,让我们来了解一下学习线性模型的重要性,以及如何入门学习。一、作为初学者如何学习线性模型?作为初学者,要高效学习机器学习以及其中的线性模型,可以遵循以下几个步骤和建议:(一)、机器学习的整体学习策略打好数学基础线性代数:理解向量、矩阵、线性变换等,这些是理解模型表示(如y=w^Tx+b)和算法优化的基础。微积分:掌握导数、梯度
- 递归消除特征法RFE筛选特征-包装法-特征选择-特征降维
糯米君_
预处理机器学习python人工智能
RFE(Recursivefeatureelimination):递归消除特征法使用一个基模型(这里使用逻辑回归)来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。RFE的具体步骤如下:1、初始的特征集为所有可用的特征。2、使用当前特征集进行建模,然后计算每个特征的重要性。3、删除最不重要的一个(或多个)特征,更新特征集。4、跳转到步骤2,直到完成所有特征的重要性
- 【机器学习】多元线性回归
T0uken
Python全栈开发1024程序员节机器学习算法线性回归
在实际应用中,许多问题都包含多个特征(输入变量),而不仅仅是单个输入变量。多元线性回归是线性回归的扩展,它能够处理多个输入特征并建立它们与目标变量的线性关系。本教程将系统性推演多元线性回归,包括向量化处理、特征放缩、梯度下降的收敛性和学习率选择等,并使用numpy实现。最后,我们会通过sklearn快速实现多元线性回归模型。多元线性回归模型简介多元线性回归的模型公式为:y=X⋅w+by=X\cdo
- Python随机森林算法详解与案例实现
闲人编程
python算法python随机森林数据分析人工智能
目录Python随机森林算法详解与案例实现1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1数据集介绍4.2代码实现4.3代码解释4.4运行结果5、回归案例:使用随机森林预测波士顿房价5.1数据集介绍5.2代码实现5.3代码解释5.4运行结果6、随机森林的优缺点7、改进方向8、应用场景9、总结Python随机森林算法详解与案例实现1、随机森林算法概述随
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 【论文精读】MotionLM
EEPI
自动驾驶深度学习论文阅读
【论文精读】MotionLM1背景2存在的问题3具体方案轨迹转运动序列模型轨迹去重和聚类loss1背景团队:Waymo时间:2023.9代码:简介:采用自回归的方式做轨迹生成,能够更好地建模交互,且避免模态坍缩,在数据集达到了SOTA。2存在的问题轨迹回归方面:原本xy预测认为空间过大,有的xy很大(t大速度快的时候),有的xy很小(t小速度慢的时候)。3具体方案Encoder采用了之前的论文Wa
- LightGBM+NRBO-Transformer-BiLSTM多变量回归预测 Matlab代码
前程算法屋
私信获取源码transformer回归matlab
LightGBM+NRBO-Transformer-BiLSTM多变量回归预测Matlab代码一、引言1.1、研究背景与意义在现代数据科学领域,多变量回归预测问题一直是一个研究热点。随着互联网和物联网技术的迅速发展,数据量呈指数级增长,如何从这些海量数据中提取有用的信息,并进行准确预测,成为了一个亟待解决的问题。多变量回归预测模型在金融风险管理、气象预报、医疗健康等多个领域具有广泛的应用。例如,在
- 【GRR】重复性和再现性
Stongtang
python
一、序章通常通过加工部件的测量数据去分析过程的状态、过程的能力和监控过程的变化。那么,怎么确保分析的结果是正确的呢?我们必须从两方面来保证,一是确保测量数据的准确性/质量,使用测量系统分析(MSA)方法对获得测量数据的测量系统进行评估;二是确保使用了合适的数据分析方法,如使用SPC工具、试验设计、方差分析、回归分析等。测量系统的误差由稳定条件下运行的测量系统多次测量数据的统计特性:偏倚和方差来表征
- 第三章 回归训练实战(以预测新冠感染人数为例)
不吃香菜(扣1复活版)
深度学习入门笔记深度学习人工智能
完整项目代码(预测第三天的新冠感染人数)fromsklearn.feature_selectionimportSelectKBestfromsklearn.feature_selectionimportchi2importcsv#读CSVimportnumpyasnpimporttimeimportmatplotlib.pyplotaspltimportpandasaspdfromtorchimp
- Python实现简易DLNA投屏功能,局域网秒变家庭影院!
代码简单说
2025开发必备python开发语言DLNA投屏无线投屏python实现dlna投屏
欢迎关注『2025开发必备』专栏,专注于解决你在开发过程中遇到的各种问题,帮你快速找到解决方案,节省大量调试时间。内容持续更新中,保证每篇都值得收藏!Python实现简易DLNA投屏,局域网秒变家庭影院!一、前言前两天,我朋友问我,能不能用Python写一个DLNA投屏工具,能把视频从电脑推送到智能电视上播放。我一听,这不就是DLNA协议的基本应用吗?于是花了点时间,写了一个简易版的DLNA投屏脚
- 【golang】量化开发学习(一)
幺零九零零
量化开发语言go
均值回归策略简介均值回归(MeanReversion)假设价格会围绕均值波动,当价格偏离均值一定程度后,会回归到均值。基本逻辑:计算一段时间内的移动均值(如20天均线)。当当前价格高于均值一定比例,做空;当低于均值一定比例,做多。持仓等待价格回归后平仓。官网下载DOLGPHINDB总结✅Docker运行DolphinDB✅创建模拟股票数据表✅Golang连接DolphinDB进行查询这样,Gola
- 【机器学习】逻辑回归(LogisticRegression)原理与实战
GentleCP
机器学习(深度学习)逻辑回归logisticregression原理与实战机器学习
文章目录前言一、什么是逻辑回归1.1逻辑回归基础概念1.2逻辑回归核心概念二、逻辑回归Demo2.1数据准备2.2创建逻辑回归分类器2.3分类器预测三、逻辑回归实战3.1数据准备3.2数据划分与模型创建3.3预测数据评估模型四、参数选择五、总结六、参考资料本文属于我的机器学习/深度学习系列文章,点此查看系列文章目录前言本文主要通过文字和代码样例讲述逻辑回归的原理(包含逻辑回归的基础概念与推导)和实
- Java 项目集成 DeepSeek,亮点项目(包成功)
代码星辰阁(公众号同名)
springboot编程springbootdeepseek人工智能java
获取DeepSeekAPI并搭建简易问答Java应用的完整步骤:“代码星辰阁”公众号有完整代码获取DeepSeekAPIKey访问DeepSeek官网:打开DeepSeek开放平台,点击右上角的“开放平台”。注册或登录账号:新注册账号通常会赠送一定数量的免费tokens。创建APIKey:在左侧菜单中点击APIKeys。点击“创建APIKey”,为APIKey命名(如“test”),然后创建。系统
- 机器学习里的逻辑回归Logistic Regression基本原理与应用
硅基创想家
AI-人工智能与大模型机器学习逻辑回归人工智能
LogisticRegression即逻辑回归,是一种广泛应用于机器学习和数据挖掘领域的有监督学习算法,以下从原理、应用、算法优缺点等方面进行介绍:基本原理线性回归基础:逻辑回归基于线性回归模型,其基本形式为:z=w1x1+w2x2+⋯+wnxn+bz=w_1x_1+w_2x_2+\cdots+w_nx_n+bz=w1x1+w2x2+⋯+wnxn+b其中xix_ixi是特征变量,wiw_iwi是对
- 推荐项目:json-schema-editor - 简易而直观的JSON架构编辑器
邴联微
推荐项目:json-schema-editor-简易而直观的JSON架构编辑器json-schema-editorJSONSchemaEditorisanintuitiveeditorforJSONschema.Itprovidesatreeviewtopresentthestructureofschema,andapropertyinspectortoeditthepropertiesofsch
- 动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)
lusterku
动手学深度学习深度学习笔记线性回归
动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)线性回归的从零开始实现生成数据集读取数据集初始化模型参数定义模型定义损失函数定义优化算法训练练习1.如果我们将权重初始化为零,会发生什么。算法仍然有效吗?2.计算二阶导数时可能会遇到什么问题?这些问题可以如何解决?3.为什么在`squared_loss`函数中需要使用`reshape`函数?4.尝试使用不同的学习率,观察损失函数值下
- 当 LSTM 遇上 ARIMA!!
奋进小青
人工智能
大家好,我是小青ARIMA和LSTM是两种常用于时间序列预测的模型,各有优劣。ARIMA擅长捕捉线性关系,而LSTM擅长处理非线性和长时间依赖的关系。将ARIMA和LSTM融合,可以充分发挥它们各自的优势,构建更强大的时间序列预测模型。ARIMA算法ARIMA是一种经典的时间序列预测方法,适用于捕捉时间序列数据中的线性趋势和季节性模式。它通过整合自回归(AR)、差分(I)、移动平均(MA)三部分,
- 零基础入门机器学习 -- 第四章分类问题与逻辑回归
山海青风
#机器学习机器学习分类逻辑回归python人工智能
4.1分类vs回归在机器学习中,任务通常分为两大类:回归(Regression):用于预测连续数值,如房价、温度、工资等。例如:预测明天的气温(28.5°C)。预测一辆二手车的价格(30,000元)。分类(Classification):用于预测离散类别,如垃圾邮件vs正常邮件。例如:判断一封邮件是否是垃圾邮件(“垃圾邮件”or“正常邮件”)。预测一个贷款申请是否会被批准(“批准”or“拒绝”)。
- Python中的决策树算法探索
Soft_Leader
算法python决策树
在Python中,决策树算法是一种常用的机器学习技术,用于分类和回归问题。下面我们将探索如何使用Python中的scikit-learn库来实现决策树算法,并简要介绍其基本概念和用法。1.安装必要的库如果你还没有安装scikit-learn库,你可以使用pip来安装它:bash复制代码pipinstall-Uscikit-learn2.导入必要的库和模块python复制代码fromsklearn.
- 海思Hi3516CV610 -----芯片说明
菩提树下的凡夫
嵌入式Linux系统开发c++c语言
Hi3516CV610这颗超高清智慧视觉SoC芯片是由海思技术有限公司推出的,其首发量产的时间是在2024年4。标志着海思正式回归安防市场,并在IPCSoC市场中展开竞争。关键特性●4K@20,6M@30分辨率●双目实时接入,支撑枪球一体机等双目机型●1T算力NPU,Transformer特性加速,大模型端侧部署●SVAC3.0编码标准,压缩率提升20%●智能编码2.0,像素升级,存储不加量,4M
- 测试基础知识
程序宅
软件测试软件测试
软件测试方法:静态测试和动态测试白盒测试和黑盒测试传统测试与面向对象测试软件测试过程:单元测试,集成测试,系统测试,验收测试按测试类型:功能、性能、界面、易用性测试、兼容性测试、安全性测试、安装测试(单元测试:在编码过程中,对每个小程序单元测试)(集成测试:将单元集成在一起后,可称为组件)回归测试、冒烟测试、随机测试(冒烟测试:是指在对一个新版本进行系统大规模的测试之前,先验证一下软件的基本功能是
- 【一起看花书1.3】——第5章 机器学习基础
应有光
基础知识机器学习人工智能深度学习
先验是“知识”,是合理的假设本文内容对应于原书的5.7-5.11共5小节内容,其中知识性、结论性的内容偏多,也加入了点个人见解。目录:5.7监督学习5.8无监督学习5.9随机梯度下降5.10构建机器学习算法5.11深度学习发展的动力5.7监督学习监督学习,本质上是复杂函数的拟合,即给定特征xxx,我们需要得到标签yyy,这不就是求一个函数的拟合嘛?线性回归是比较简单的,从高代、概率论就可以理解,甚
- RIME-CNN-SVM故障诊断
九亿AI算法优化工作室&
cnn支持向量机人工智能matlabpython
构建一个高效、准确的基于卷积神经网络(CNN)的电力系统故障识别与分类仿真系统,实现对电力系统故障的精准识别与分类。在这一模型中,CNN被用来执行故障数据的特征提取与抽象化处理,随后,这些经过抽象的特征会被传递给SVM模型,由SVM进一步执行分类与回归分析的任务,从而实现对故障类型的精确判定或故障严重程度的准确评估。为了进一步提升模型的泛化能力与预测精度,引入了雾凇算法来精细调整CNN与SVM的各
- 机器学习·逻辑回归
AAA顶置摸鱼
python深度学习机器学习逻辑回归人工智能
前言逻辑回归虽然名称中有“回归”,但实际上用于分类问题。基于线性回归的模型,通过使用逻辑函数(如Sigmoid函数)将线性组合的结果映射到0到1之间的概率值,用于表示属于某个类别的可能性。一、逻辑回归vs线性回归特性逻辑回归线性回归任务类型分类(二分类为主)回归(预测连续值)输出范围(0,1)(概率值)(-∞,+∞)核心函数Sigmoid函数线性函数损失函数对数损失函数(交叉熵)均方误差(MSE)
- 零基础入门机器学习 -- 第三章第一个机器学习模型——线性回归
山海青风
#机器学习人工智能机器学习回归线性回归python
3.1线性回归的概念在现实生活中,许多事情都遵循某种线性关系,比如:房价vs面积:房子的面积越大,价格通常越高。工资vs工作经验:工作经验越多,薪资往往更高。汽车油耗vs车速:在一定范围内,车速越快,油耗可能越高。线性回归(LinearRegression)是机器学习中最基础的算法之一,它用于研究两个变量之间的线性关系,即一个变量(自变量)如何影响另一个变量(因变量)。3.2线性回归的数学直觉线性
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR