本周学习内容:
PART 1 视频学习
PART 2 代码练习
pytorch基础练习
定义数据
定义操作
螺旋数据分类
构建线性模型分类
构建两层神经网络分类
拓展测试
拓展测试——构建三层神经网络
已解决的小问题
PyTorch是一个python库,它主要提供了两个高级功能:
一般定义数据使用torch.Tensor , tensor的意思是张量,是数字各种形式的总称
Tensor支持各种各样类型的数据,包括:
torch.float32, torch.float64, torch.float16, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64 。这里不过多描述。
创建Tensor有多种方法,包括:ones, zeros, eye, arange, linspace, rand, randn, normal, uniform, randperm, 使用的时候可以在线搜,下面主要通过代码展示
# 开发日期:2022/7/10
import torch
# 可以是一个数
x = torch.tensor(666)
print(x)
# 可以是一维数组(向量)
x = torch.tensor([1,2,3,4,5,6])
print(x)
# 可以是二维数组(矩阵)
x = torch.ones(2,3)
print(x)
# 可以是任意维度的数组(张量)
x = torch.ones(2,3,4)
print(x)
# 创建一个空张量
x = torch.empty(5,3)
print(x)
# 创建一个随机初始化的张量
x = torch.rand(5,3)
print(x)
# 创建一个全0的张量,里面的数据类型为 long
x = torch.zeros(5,3,dtype=torch.long)
print(x)
# 基于现有的tensor,创建一个新tensor,
# 从而可以利用原有的tensor的dtype,device,size之类的属性信息
y = x.new_ones(5,3) #tensor new_* 方法,利用原来tensor的dtype,device
print(y)
z = torch.randn_like(x, dtype=torch.float) # 利用原来的tensor的大小,但是重新定义了dtype
print(z)
输出结果如下:
凡是用Tensor进行各种运算的,都是Function
最终,还是需要用Tensor来进行计算的,计算无非是
基本运算包括: abs/sqrt/div/exp/fmod/pow ,及一些三角函数 cos/ sin/ asin/ atan2/ cosh,及 ceil/round/floor/trunc 等具体在使用的时候可以百度一下
布尔运算包括: gt/lt/ge/le/eq/ne,topk, sort, max/min
线性计算包括: trace, diag, mm/bmm,t,dot/cross,inverse,svd 等
# 创建一个 2x4 的tensor
m = torch.Tensor([[2, 5, 3, 7],
[4, 2, 1, 9]])
print(m.size(0), m.size(1), m.size(), sep=' -- ')
# 返回 m 中元素的数量
print(m.numel())
# 返回 第0行,第2列的数
print(m[0][2])
# 返回 第1列的全部元素
print(m[:, 1])
# 返回 第0行的全部元素
print(m[0, :])
# Create tensor of numbers from 1 to 5
# 注意这里结果是1到4,没有5
#v = torch.arange(1, 5)
v = torch.arange(1, 5).float()
print(v)
# Scalar product
print(m @ v)
# Calculated by 1*2 + 2*5 + 3*3 + 4*7
print(m[[0], :] @ v)
# Add a random tensor of size 2x4 to m
m + torch.rand(2, 4)
# 转置,由 2x4 变为 4x2
print(m.t())
# 使用 transpose 也可以达到相同的效果,具体使用方法可以百度
print(m.transpose(0, 1))
# returns a 1D tensor of steps equally spaced points between start=3, end=8 and steps=20
torch.linspace(3, 8, 20)
from matplotlib import pyplot as plt
# matlabplotlib 只能显示numpy类型的数据,下面展示了转换数据类型,然后显示
# 注意 randn 是生成均值为 0, 方差为 1 的随机数
# 下面是生成 1000 个随机数,并按照 100 个 bin 统计直方图
plt.hist(torch.randn(1000).numpy(), 100);
plt.show()#展示图象
# 当数据非常非常多的时候,正态分布会体现的非常明显
plt.hist(torch.randn(10**6).numpy(), 100);
plt.show()#展示图象
# 创建两个 1x4 的tensor
a = torch.Tensor([[1, 2, 3, 4]])
b = torch.Tensor([[5, 6, 7, 8]])
# 在 0 方向拼接 (即在 Y 方各上拼接), 会得到 2x4 的矩阵
print( torch.cat((a,b), 0))
# 在 1 方向拼接 (即在 X 方各上拼接), 会得到 1x8 的矩阵
print( torch.cat((a,b), 1))
输出结果如下
初始化 X 和 Y。 X 可以理解为特征矩阵,Y可以理解为样本标签。 结合代码可以看到,X的为一个 NxC 行, D 列的矩阵。C 类样本,每类样本是 N个,所以是 N*C 行。每个样本的特征维度是2,所以是 2列。
在 python 中,调用 zeros 类似的函数,第一个参数是 y方向的,即矩阵的行;第二个参数是 x方向的,即矩阵的列,大家得注意下,不要搞反了。
# 开发日期:2022/7/10
#!wget https://raw.githubusercontent.com / Atcold / pytorch - Deep - Learning / master / res / plot_lib.py
import wget
import tempfile
url = 'https://raw.githubusercontent.com/Atcold/pytorch-Deep-Learning/master/res/plot_lib.py'
# 下载文件,使用默认文件名,结果返回文件名
file_name = wget.download(url)
print(file_name)
import random
import torch
from torch import nn, optim
import math
from IPython import display
from plot_lib import plot_data, plot_model, set_default
# 因为colab是支持GPU的,torch 将在 GPU 上运行,但笔记本没有独立显卡,所以我没有cuda
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('device: ', device)
# 初始化随机数种子。神经网络的参数都是随机初始化的,
# 不同的初始化参数往往会导致不同的结果,当得到比较好的结果时我们通常希望这个结果是可以复现的,
# 因此,在pytorch中,通过设置随机数种子也可以达到这个目的
seed = 12345
random.seed(seed)
torch.manual_seed(seed)
N = 1000 # 每类样本的数量
D = 2 # 每个样本的特征维度
C = 3 # 样本的类别
H = 100 # 神经网络里隐层单元的数量
输出结果为:
下面结合代码看看 3000个样本的特征是如何初始化的
# 初始化随机数种子。神经网络的参数都是随机初始化的,
# 不同的初始化参数往往会导致不同的结果,当得到比较好的结果时我们通常希望这个结果是可以复现的,
# 因此,在pytorch中,通过设置随机数种子也可以达到这个目的
seed = 12345
random.seed(seed)
torch.manual_seed(seed)
N = 1000 # 每类样本的数量
D = 2 # 每个样本的特征维度
C = 3 # 样本的类别
H = 100 # 神经网络里隐层单元的数量
X = torch.zeros(N * C, D).to(device)
Y = torch.zeros(N * C, dtype=torch.long).to(device)
for c in range(C):
index = 0
t = torch.linspace(0, 1, N) # 在[0,1]间均匀的取10000个数,赋给t
# 下面的代码不用理解太多,总之是根据公式计算出三类样本(可以构成螺旋形)
# torch.randn(N) 是得到 N 个均值为0,方差为 1 的一组随机数,注意要和 rand 区分开
inner_var = torch.linspace((2 * math.pi / C) * c, (2 * math.pi / C) * (2 + c), N) + torch.randn(N) * 0.2
# 每个样本的(x,y)坐标都保存在 X 里
# Y 里存储的是样本的类别,分别为 [0, 1, 2]
for ix in range(N * c, N * (c + 1)):
X[ix] = t[index] * torch.FloatTensor((math.sin(inner_var[index]), math.cos(inner_var[index])))
Y[ix] = c
index += 1
print("Shapes:")
print("X:", X.size())
print("Y:", Y.size())
输出结果
plot_data(X, Y)
plt.show()#展示图象
输出结果
使用 print(y_pred.shape) 可以看到模型的预测结果,为[3000, 3]的矩阵。每个样本的预测结果为3个,保存在 y_pred 的一行里。值最大的一个,即为预测该样本属于的类别
score, predicted = torch.max(y_pred, 1) 是沿着第二个方向(即X方向)提取最大值。最大的那个值存在 score 中,所在的位置(即第几列的最大)保存在 predicted 中。下面代码把第10行的情况输出,供解释说明
此外,大家可以看到,每一次反向传播前,都要把梯度清零,这个在知乎上有一个回答,大家可以参考:PyTorch中在反向传播前为什么要手动将梯度清零? - 知乎
#构建线性模型分类
learning_rate = 1e-3
lambda_l2 = 1e-5
# nn 包用来创建线性模型
# 每一个线性模型都包含 weight 和 bias
model = nn.Sequential(
nn.Linear(D, H),
nn.Linear(H, C)
)
model.to(device) # 把模型放到GPU上
# nn 包含多种不同的损失函数,这里使用的是交叉熵(cross entropy loss)损失函数
criterion = torch.nn.CrossEntropyLoss()
# 这里使用 optim 包进行随机梯度下降(stochastic gradient descent)优化
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=lambda_l2)
# 开始训练
for t in range(1000):
# 把数据输入模型,得到预测结果
y_pred = model(X)
# 计算损失和准确率
loss = criterion(y_pred, Y)
score, predicted = torch.max(y_pred, 1)
acc = (Y == predicted).sum().float() / len(Y)
print('[EPOCH]: %i, [LOSS]: %.6f, [ACCURACY]: %.3f' % (t, loss.item(), acc))
display.clear_output(wait=True)
# 反向传播前把梯度置 0
optimizer.zero_grad()
# 反向传播优化
loss.backward()
# 更新全部参数
optimizer.step()
print(y_pred.shape)
print(y_pred[10, :])
print(score[10])
print(predicted[10])
# Plot trained model
print(model)
plot_model(X, Y, model)
输出结果:
使用 print(model) 把模型输出,可以看到有两层:
从图示可以看出,线性模型的准确率最高只能达到 50% 左右,对于这样复杂的一个数据分布,线性模型难以实现准确分类。
#构建两层神经网络分类
learning_rate = 1e-3
lambda_l2 = 1e-5
# 这里可以看到,和上面模型不同的是,在两层之间加入了一个 ReLU 激活函数
model = nn.Sequential(
nn.Linear(D, H),
nn.ReLU(),
nn.Linear(H, C)
)
model.to(device)
# 下面的代码和之前是完全一样的,这里不过多叙述
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=lambda_l2) # built-in L2
# 训练模型,和之前的代码是完全一样的
for t in range(1000):
y_pred = model(X)
loss = criterion(y_pred, Y)
score, predicted = torch.max(y_pred, 1)
acc = ((Y == predicted).sum().float() / len(Y))
print("[EPOCH]: %i, [LOSS]: %.6f, [ACCURACY]: %.3f" % (t, loss.item(), acc))
display.clear_output(wait=True)
# zero the gradients before running the backward pass.
optimizer.zero_grad()
# Backward pass to compute the gradient
loss.backward()
# Update params
optimizer.step()
# Plot trained model
print(model)
plot_model(X, Y, model)
plt.show()#展示图象
输出结果:
在两层神经网络里加入 ReLU 激活函数以后,分类的准确率得到了显著提高。
我尝试了不同类型的激活函数(Pytorch的22个激活函数_Wanderer001的博客-CSDN博客_pytorch 激活函数)在该问题中的效果,实验结果如下:
将表现最好的两个激活函数组合,构建三层神经网络
model = nn.Sequential(
nn.Linear(D, H),
nn.PReLU(),
nn.LeakyReLU(),
nn.Linear(H, C)
)#其它内容同上
结果如下:
1、torch.arange默认建立的张量不是float型,导致运算错误
解决方法:在torch.arange()后加.float()即可解决
2.!wget https://raw.githubusercontent.com / Atcold / pytorch - Deep - Learning / master / res / plot_lib.py无法正常运行
解决方法:先在Anaconda Prompt中 pip3 install wget,在pycharm中按如下操作