【动手学深度学习】19.卷积层

1、实现互相关运算

import torch
from torch import nn
from d2l import torch as d2l

def corr2d(X, K):    //X为输入,K为卷积核
    """计算二维互相关运算。"""
    h, w = K.shape   //获取
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1)) 
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
    return Y

2、二维卷积层的实现

class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.weight = nn.Parameter(torch.rand(kernel_size))
        self.bias = nn.Parameter(torch.zeros(1))

    def forward(self, x):
        return corr2d(x, self.weight) + self.bias
conv2d = nn.Conv2d(1, 1, kernel_size=(1, 2), bias=False)

X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
//模拟SGD
for i in range(10):
    Y_hat = conv2d(X)
    l = (Y_hat - Y)**2
    conv2d.zero_grad()
    l.sum().backward()
    conv2d.weight.data[:] -= 3e-2 * conv2d.weight.grad
    if (i + 1) % 2 == 0:
        print(f'batch {i+1}, loss {l.sum():.3f}')

你可能感兴趣的:(动手学深度学习课堂笔记,深度学习,python,人工智能)