class sklearn.svm.SVC(C = 1.0,kernel ='rbf',
degree = 3,gamma ='auto_deprecated',
coef0 = 0.0,shrinking = True,
probability = False,tol = 0.001,
cache_size = 200,class_weight = None,
verbose = False,max_iter = -1,
decision_function_shape =' ovr ',random_state =None)
参数:
C : float,可选(默认值= 1.0) 错误术语的惩罚参数C.
kernel : string,optional(default =‘rbf’),指定要在算法中使用的内核类型。它必须是’linear’,‘poly’,‘rbf’,‘sigmoid’,‘precomputed’或者callable之一。如果没有给出,将使用’rbf’。如果给出可调用,则它用于从数据矩阵预先计算内核矩阵;
该矩阵应该是一个形状的数组。(n_samples, n_samples)
度 : int,可选(默认= 3) 多项式核函数的次数(‘poly’)。被所有其他内核忽略。
gamma : float,optional(默认=‘auto’) ‘rbf’,'poly’和’sigmoid’的核系数。
当前默认值为’auto’,它使用1 / n_features,如果gamma=‘scale’传递,则使用1 /(n_features *
X.var())作为gamma的值。当前默认的gamma’‘auto’将在版本0.22中更改为’scale’。‘auto_deprecated’,不推荐使用’auto’版本作为默认值,表示没有传递明确的gamma值。
coef0 : float,optional(默认值= 0.0) 核函数中的独立项。它只在’poly’和’sigmoid’中很重要。
收缩 : 布尔值,可选(默认= True) 是否使用收缩启发式。
概率 : 布尔值,可选(默认=假) 是否启用概率估计。必须在调用之前启用它fit,并且会减慢该方法的速度。
tol : float,optional(默认值= 1e-3) 容忍停止标准。
cache_size : float,可选 指定内核缓存的大小(以MB为单位)。
class_weight : {dict,‘balanced’},可选。
将类i的参数C设置为SVC的class_weight [i] *C. 如果没有给出,所有课程都应该有一个重量。“平衡”模式使用y的值自动调整与输入数据中的类频率成反比的权重n_samples /(n_classes * np.bincount(y))
详细说明 : bool,默认值:False
启用详细输出。请注意,此设置利用libsvm中的每进程运行时设置,如果启用,则可能无法在多线程上下文中正常运行。
max_iter : int,optional(默认值= -1) 求解器内迭代的硬限制,或无限制的-1。
decision_function_shape : ‘ovo’,‘ovr’,默认=‘ovr’
是否将形状(n_samples,n_classes)的one-vs-rest(‘ovr’)决策函数作为所有其他分类器返回,或者返回具有形状的libsvm的原始one-vs-one(‘ovo’)决策函数(n_samples)
,n_classes *(n_classes - 1)/ 2)。但是,一对一(‘ovo’)总是被用作多级策略。在版本0.19中更改: decision_function_shape默认为’ovr’。
版本0.17中的新功能:建议使用decision_function_shape =‘ovr’。
更改版本0.17:已弃用decision_function_shape ='ovo’且无。
random_state : int,RandomState实例或None,可选(默认=无)
伪随机数生成器的种子在对数据进行混洗以用于概率估计时使用。如果是int,则random_state是随机数生成器使用的种子;
如果是RandomState实例,则random_state是随机数生成器;
如果为None,则随机数生成器是由其使用的RandomState实例np.random。
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm import SVC
>>> clf = SVC(gamma='auto')
>>> clf.fit(X,y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
>>> print(clf.predict([[-0.8, -1]]))
[1]
>>>
decision_function(self, X)
评估X中样本的决策函数。
fit(self, X, y[, sample_weight])
根据给定的训练数据拟合SVM模型。
get_params(self[, deep])
获取此估算工具的参数。
predict(self, X)
对X中的样本进行分类。
score(self, X, y[, sample_weight])
返回给定测试数据和标签的平均精度。
set_params(self, \*\*params)
设置此估算器的参数。
示例一:多标签分类
通过投影到PCA和CCA找到的前两个主要组件以进行可视化目的,然后使用sklearn.multiclass.OneVsRestClassifier具有线性内核的两个SVC
的元分类器来学习每个类的判别模型来执行分类。请注意,PCA用于执行无监督降维,而CCA用于执行监督降维。
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_multilabel_classification
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.cross_decomposition import CCA
def plot_hyperplane(clf, min_x, max_x, linestyle, label):
# get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough
yy = a * xx - (clf.intercept_[0]) / w[1]
plt.plot(xx, yy, linestyle, label=label)
def plot_subfigure(X, Y, subplot, title, transform):
if transform == "pca":
X = PCA(n_components=2).fit_transform(X)
elif transform == "cca":
X = CCA(n_components=2).fit(X, Y).transform(X)
else:
raise ValueError
min_x = np.min(X[:, 0])
max_x = np.max(X[:, 0])
min_y = np.min(X[:, 1])
max_y = np.max(X[:, 1])
classif = OneVsRestClassifier(SVC(kernel='linear'))
classif.fit(X, Y)
plt.subplot(2, 2, subplot)
plt.title(title)
zero_class = np.where(Y[:, 0])
one_class = np.where(Y[:, 1])
plt.scatter(X[:, 0], X[:, 1], s=40, c='gray', edgecolors=(0, 0, 0))
plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b',
facecolors='none', linewidths=2, label='Class 1')
plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange',
facecolors='none', linewidths=2, label='Class 2')
plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--',
'Boundary\nfor class 1')
plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.',
'Boundary\nfor class 2')
plt.xticks(())
plt.yticks(())
plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x)
plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y)
if subplot == 2:
plt.xlabel('First principal component')
plt.ylabel('Second principal component')
plt.legend(loc="upper left")
plt.figure(figsize=(8, 6))
X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=True,
random_state=1)
plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca")
plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca")
X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=False,
random_state=1)
plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca")
plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca")
plt.subplots_adjust(.04, .02, .97, .94, .09, .2)
plt.show()
print(__doc__)
# Author: Gael Varoquaux
# Andreas Mueller
# License: BSD 3 clause
# Standard scientific Python imports
import matplotlib.pyplot as plt
import numpy as np
from time import time
# Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, pipeline
from sklearn.kernel_approximation import (RBFSampler,
Nystroem)
from sklearn.decomposition import PCA
# The digits dataset
digits = datasets.load_digits(n_class=9)
# To apply an classifier on this data, we need to flatten the image, to
# turn the data in a (samples, feature) matrix:
n_samples = len(digits.data)
data = digits.data / 16.
data -= data.mean(axis=0)
# We learn the digits on the first half of the digits
data_train, targets_train = (data[:n_samples // 2],
digits.target[:n_samples // 2])
# Now predict the value of the digit on the second half:
data_test, targets_test = (data[n_samples // 2:],
digits.target[n_samples // 2:])
# data_test = scaler.transform(data_test)
# Create a classifier: a support vector classifier
kernel_svm = svm.SVC(gamma=.2)
linear_svm = svm.LinearSVC()
# create pipeline from kernel approximation
# and linear svm
feature_map_fourier = RBFSampler(gamma=.2, random_state=1)
feature_map_nystroem = Nystroem(gamma=.2, random_state=1)
fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier),
("svm", svm.LinearSVC())])
nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem),
("svm", svm.LinearSVC())])
# fit and predict using linear and kernel svm:
kernel_svm_time = time()
kernel_svm.fit(data_train, targets_train)
kernel_svm_score = kernel_svm.score(data_test, targets_test)
kernel_svm_time = time() - kernel_svm_time
linear_svm_time = time()
linear_svm.fit(data_train, targets_train)
linear_svm_score = linear_svm.score(data_test, targets_test)
linear_svm_time = time() - linear_svm_time
sample_sizes = 30 * np.arange(1, 10)
fourier_scores = []
nystroem_scores = []
fourier_times = []
nystroem_times = []
for D in sample_sizes:
fourier_approx_svm.set_params(feature_map__n_components=D)
nystroem_approx_svm.set_params(feature_map__n_components=D)
start = time()
nystroem_approx_svm.fit(data_train, targets_train)
nystroem_times.append(time() - start)
start = time()
fourier_approx_svm.fit(data_train, targets_train)
fourier_times.append(time() - start)
fourier_score = fourier_approx_svm.score(data_test, targets_test)
nystroem_score = nystroem_approx_svm.score(data_test, targets_test)
nystroem_scores.append(nystroem_score)
fourier_scores.append(fourier_score)
# plot the results:
plt.figure(figsize=(8, 8))
accuracy = plt.subplot(211)
# second y axis for timeings
timescale = plt.subplot(212)
accuracy.plot(sample_sizes, nystroem_scores, label="Nystroem approx. kernel")
timescale.plot(sample_sizes, nystroem_times, '--',
label='Nystroem approx. kernel')
accuracy.plot(sample_sizes, fourier_scores, label="Fourier approx. kernel")
timescale.plot(sample_sizes, fourier_times, '--',
label='Fourier approx. kernel')
# horizontal lines for exact rbf and linear kernels:
accuracy.plot([sample_sizes[0], sample_sizes[-1]],
[linear_svm_score, linear_svm_score], label="linear svm")
timescale.plot([sample_sizes[0], sample_sizes[-1]],
[linear_svm_time, linear_svm_time], '--', label='linear svm')
accuracy.plot([sample_sizes[0], sample_sizes[-1]],
[kernel_svm_score, kernel_svm_score], label="rbf svm")
timescale.plot([sample_sizes[0], sample_sizes[-1]],
[kernel_svm_time, kernel_svm_time], '--', label='rbf svm')
# vertical line for dataset dimensionality = 64
accuracy.plot([64, 64], [0.7, 1], label="n_features")
# legends and labels
accuracy.set_title("Classification accuracy")
timescale.set_title("Training times")
accuracy.set_xlim(sample_sizes[0], sample_sizes[-1])
accuracy.set_xticks(())
accuracy.set_ylim(np.min(fourier_scores), 1)
timescale.set_xlabel("Sampling steps = transformed feature dimension")
accuracy.set_ylabel("Classification accuracy")
timescale.set_ylabel("Training time in seconds")
accuracy.legend(loc='best')
timescale.legend(loc='best')
# visualize the decision surface, projected down to the first
# two principal components of the dataset
pca = PCA(n_components=8).fit(data_train)
X = pca.transform(data_train)
# Generate grid along first two principal components
multiples = np.arange(-2, 2, 0.1)
# steps along first component
first = multiples[:, np.newaxis] * pca.components_[0, :]
# steps along second component
second = multiples[:, np.newaxis] * pca.components_[1, :]
# combine
grid = first[np.newaxis, :, :] + second[:, np.newaxis, :]
flat_grid = grid.reshape(-1, data.shape[1])
# title for the plots
titles = ['SVC with rbf kernel',
'SVC (linear kernel)\n with Fourier rbf feature map\n'
'n_components=100',
'SVC (linear kernel)\n with Nystroem rbf feature map\n'
'n_components=100']
plt.tight_layout()
plt.figure(figsize=(12, 5))
# predict and plot
for i, clf in enumerate((kernel_svm, nystroem_approx_svm,
fourier_approx_svm)):
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
plt.subplot(1, 3, i + 1)
Z = clf.predict(flat_grid)
# Put the result into a color plot
Z = Z.reshape(grid.shape[:-1])
plt.contourf(multiples, multiples, Z, cmap=plt.cm.Paired)
plt.axis('off')
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=targets_train, cmap=plt.cm.Paired,
edgecolors=(0, 0, 0))
plt.title(titles[i])
plt.tight_layout()
plt.show()