Java层的消息机制主要由MessageQueue,Handler,Looper来实现
Looper
ActivityThread类的main方法为进程的入口,也就是所说的主线程,这里开始了Looper的初始化
ActivityThread.java
public static void main(String[] args) {
...
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
...
Looper.loop();
}
Looper的的主要职责是对MessageQueue的管理:初始化、轮询、退出
Looper.java
//static修饰意味着只实列化一次, Looper对象可能有很多,但ThreadLocal只有一个
static final ThreadLocal sThreadLocal = new ThreadLocal();
//虽然此方法是公共的,但用户不要使用,它是给系统调用的
public static void prepareMainLooper() {
//与普通Looper的区别是,参数quitAllowed为false,即主线的Looper不允许退出,它是应用程序运行的根基
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
private static void prepare(boolean quitAllowed) {
//通过ThreadLocal.get()方法可以获取与调用线程关联的Looper对象
//如果调用线程已经关联了Looper会抛出异常,因为每个线程只能关联一个Looper
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
//使用ThreadLocal为调用线程关联Looper
sThreadLocal.set(new Looper(quitAllowed));
}
//实列化Looper,主要是实列化MeseageQueue,quitAllowed=false,说明此MeseageQueue不可以退出
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
MessageQueue初始化很简单
MessageQueue.java
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
//使用native方法初始化消息队列
mPtr = nativeInit();
}
Thread类中threadLocals字段是用来记录线程局部变量,它是线程私有的,这样就不存在并发问题,但Thread类并不管理这个字段,而是由ThreadLocal类维护。Thread类中的大部分字段是private修饰,但这个字段特意设计成包访问权限,这样同包下的ThreadLocal才能维护。
Thread.java
/* ThreadLocal values pertaining to this thread. This map is maintained
* by the ThreadLocal class. */
ThreadLocal.ThreadLocalMap threadLocals = null;
ThreadLocalMap是ThreadLocal的静态内部类,一个专为Thread线程局部变量而定制的hash map,也是包访问权限,这样Thread类可以使用。里面的方法、字段都是私有,只能ThreadLocal访问。ThreadLocalMap不需要访问外部类ThreadLocal,所以设计成静态内部类,这样不持有外部类引用,完成对象初始化的速度更快。
ThreadLocal.java
static class ThreadLocalMap {
ThreadLocalMap(ThreadLocal> firstKey, Object firstValue) {
//Entry继承了WeakReference,对ThreadLocal是弱引用,防止ThreadLocalMap生命周期过长影响ThreadLocal的垃圾回收
table = new Entry[INITIAL_CAPACITY];
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
}
为什么线程局部变量设计成一个Map呢,因为可能有多个ThreadLocal实列在同一个线程上关联不同的线程本地变量,所以这个Map维护的是这样的
Key | Value |
---|---|
ThreadLocal |
Looper |
ThreadLocal |
Apple |
ThreadLocal |
Orange |
再看prepare里的set(Looper)方法,就是把
上面的main方法有一个getHandler调用,返回的是无参构造的Handler。Handler的特点是必须关联一个Looper,如果没有传Looper作为参数,那么当前调用线程必须事先关联好Looper,如上所述。
Handler.java
public Handler() {
this(null, false);
}
public Handler(Callback callback, boolean async) {
//获取的就是当前调用线程关联的Looper
mLooper = Looper.myLooper();
// 没有Looper会抛异常,也就是初始化handler之前必须有Looper
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
//使用的是Looper中的消息队列
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
Looper.java
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
至此Looper、MessageQueue、Handler都完成了初始化和关联,Loop.loop开始无限循环获取要处理的消息
Looper.java
public static void loop() {
...
final MessageQueue queue = me.mQueue;
...
//开始在这个线程上无线循环
for (;;) {
//从消息队列取一个消息,如果没有会阻塞在此不会占用CPU
Message msg = queue.next();
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
...
try {
//调用msg相关的handler处理,msg持用handler引用也是导致内存泄漏的地方
msg.target.dispatchMessage(msg);
} finally {
...
}
...
// 回收消息到消息池中复用
msg.recycleUnchecked();
}
}
MessageQueue
MQ Java层是一个包装,核心功能在native,当Looper开始运作,真正在工作的是MQ ,它使用链表来维持一个以时间排序的消息队列。MQ的作用主要就是压入msg,取出msg,移除msg等
MQ的主要工作1:从队头取出Message
Message next() {
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
//调用本地方法轮询一次,没有消息会阻塞,直到超时或被唤醒,不会占用CPU
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
// 对于取出来的MSG,首先要判断它是不是一个barrier(特征:handler=null)用来阻塞同步消息的
//应用程序很少使用这种异步MSG,系统使用场景?->ViewRootImpl。
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
// 如果是的话找到后面第一条异步MSG(特征:msg.isAsynchronous())
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
//如果msg是异步消息,那么prevMsg != null,如果是同步消息,那么prevMsg == null
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
//从队列中移除
msg.next = null;
msg.markInUse();
return msg;
}
} else {
//如果消息队列被barrier阻塞却找不到异步消息,MQ会继续阻塞而不会挑一个同步消息执行
nextPollTimeoutMillis = -1;
}
if (mQuitting) {
//此时未处理的消息已清空,调用native方法销毁消息队列
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
//如果队列中没有消息或者有消息但没有到执行时间,会给IdleHandler一次回调的机会,
//也就是在队列不繁忙的时候执行一些操作
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
MQ的主要工作2:向消息队列插入Message
MessageQueue.java
boolean enqueueMessage(Message msg, long when) {
...
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
//标记处理时间,决定在队列的位置
msg.when = when;
//队头
Message p = mMessages;
boolean needWake;
//直接插到头部
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
//判断唤醒队列的条件:已阻塞 消息头是barrier,插入的消息是异步的
//上面的分析可知,barrier会阻塞同步消息,需要唤醒MQ来处理这个异步消息
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
//找到在单链表中要插入的位置
for (;;) {
prev = p;
p = p.next;
//p==null 插入队尾,一种是队列中只有一个消息头,另外一种情况是msg的when大于队列中所有when,要插到队尾
//when
MQ的主要工作3:按条件移除消息
除了移除所有消息,还可根据handler、what 、obj等参数移除msg。 为什么分两个循环 , 一个循环应该就能完成 原因在于会丢掉队头消息,
void removeMessages(Handler h, int what, Object object) {
if (h == null) {
return;
}
synchronized (this) {
Message p = mMessages;
//当从队头开始就符合条件时,msg会被移除 这样我们会丢失队头,所以在回收的同时也要重新设置队头
// Remove all messages at front.
while (p != null && p.target == h && p.what == what
&& (object == null || p.obj == object)) {
Message n = p.next;
//mMessages设置新队头
mMessages = n;
p.recycleUnchecked();
p = n;
}
// Remove all messages after front.
//在确定新队头后 回收后面符合条件的msg 并从队列移除
while (p != null) {
Message n = p.next;
if (n != null) {
if (n.target == h && n.what == what
&& (object == null || n.obj == object)) {
Message nn = n.next;
n.recycleUnchecked();
p.next = nn;
continue;
}
}
p = n;
}
}
}
MQ的最后的工作:退出
注意:主线程的MQ是不可以退出的,初始化的参数mQuitAllowed=false。带Looper的子线程则在使用结束后必须手动退出,否则线程无法终止,导致整个引用链都无法回收
void quit(boolean safe) {
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
synchronized (this) {
...
if (safe) {
removeAllFutureMessagesLocked();
} else {
//不安全退出相对简单,不管三七二十一把队列的所有msg回收掉
removeAllMessagesLocked();
}
//?
nativeWake(mPtr);
}
}
//主要看看安全退出 策略是把队列中比当前时间大的msg回收掉
private void removeAllFutureMessagesLocked() {
final long now = SystemClock.uptimeMillis();
Message p = mMessages;
if (p != null) {
//如果队头的时间都比now大,说明全都可以移除
if (p.when > now) {
removeAllMessagesLocked();
} else {
//否则找到比now大的第一个msg,也就是n
Message n;
for (;;) {
n = p.next;
if (n == null) {
return;
}
if (n.when > now) {
break;
}
p = n;
}
//p的后面就是n,从n开始都是要移除的 断开链接
p.next = null;
//从n开始回收
do {
p = n;
n = p.next;
p.recycleUnchecked();
} while (n != null);
}
}
}
MQ的次要工作1:向消息队列插入同步屏障
private int postSyncBarrier(long when) {
// Enqueue a new sync barrier token.
// We don't need to wake the queue because the purpose of a barrier is to stall it.
synchronized (this) {
final int token = mNextBarrierToken++;
final Message msg = Message.obtain();
//msg的target为null,这是我们识别同步屏障的特征
msg.markInUse();
msg.when = when;
msg.arg1 = token;
Message prev = null;
Message p = mMessages;
//同样要给同步屏障msg找到需要插入的位置,如果when为0 明显插到队头
if (when != 0) {
//p.when<=when 表示链表中的p比要插入的msg时间小,msg需要往后找位置
while (p != null && p.when <= when) {
prev = p;
p = p.next;
}
}
//找到了能插入的位置
if (prev != null) { // invariant: p == prev.next
msg.next = p;
prev.next = msg;
} else {
//prev==null 说明插在队头 when比队列中时间都小
msg.next = p;
mMessages = msg;
}
return token;
}
}
MQ的次要工作2:移除同步屏障
public void removeSyncBarrier(int token) {
// Remove a sync barrier token from the queue.
// If the queue is no longer stalled by a barrier then wake it.
synchronized (this) {
Message prev = null;
Message p = mMessages;
//一般来说同步屏障就在队头,如果在队中说明还没起屏障作用就要把它移除
while (p != null && (p.target != null || p.arg1 != token)) {
prev = p;
p = p.next;
}
if (p == null) {
throw new IllegalStateException("The specified message queue synchronization "
+ " barrier token has not been posted or has already been removed.");
}
final boolean needWake;
//如果prev!=null说明在队中,同步屏障还没起作用 没有阻塞队列 剔除p 不需要唤醒
if (prev != null) {
prev.next = p.next;
needWake = false;
} else {
//同步屏障在队头,将队头指向同步屏障msg的下一个 即移除barrier
mMessages = p.next;
//为啥下一个msg为空需要唤醒队列,不解??
needWake = mMessages == null || mMessages.target != null;
}
p.recycleUnchecked();
// If the loop is quitting then it is already awake.
// We can assume mPtr != 0 when mQuitting is false.
if (needWake && !mQuitting) {
nativeWake(mPtr);
}
}
}
Handler
Handler是个辅助类,方便其它线程发送消息给自己所在线程处理处理,但自己并不维护消息队列,而是交由MessageQueue管理,它不仅管理Java 层消息,也管理Natvie层消息。Looper绑定唯一Thread,Handler绑定唯一的Looper,所以如果你希望msg在哪个线程执行,使用和那个线程绑定的Handler发送消息即可.
消息处理
Handler提供的插入、查询、删除msg方法,最终都是由MQ实现的, 以插入为例
Handler.java
//最终都调用这个方法发送消息
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
//设置msg由谁处理,就是发送它的handler,谁发送谁处理,
//发送可以在任意线程调用,处理一定在和handler关联的线程上
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
由queue负责将消息入队列
return queue.enqueueMessage(msg, uptimeMillis);
}
特殊操作
Handler中有一个特殊的方法,它能阻塞调用者的线程,直到handler所在的线程把这个msg执行完毕
Handler.java
public final boolean runWithScissors(@NonNull Runnable r, long timeout) {
...
//如果调用线程和Handler所在线程是同一个,直接执行后返回
if (Looper.myLooper() == mLooper) {
r.run();
return true;
}
//否则使用BlockingRunnable
BlockingRunnable br = new BlockingRunnable(r);
return br.postAndWait(this, timeout);
}
主要看BlockingRunnable的实现
Handler.java
private static final class BlockingRunnable implements Runnable {
private final Runnable mTask;
private boolean mDone;
public BlockingRunnable(Runnable task) {
mTask = task;
}
@Override
public void run() {
//被handler执行了 最后设置mDone=true 唤醒等待线程 跳出无限循环结束postAndWait,也就解除了阻塞
//为什么looper退出的时候最好使用安全模式,从上面的分析可知,安全模式只移除quit时刻之后的msg,这样能
//保证BlockingRunnable这样的msg能执行,阻塞也能解除。如果是非安全模式,所有msg被移除,包括这个BlockingRunnable,
//那么此run方法就永远不会执行,此线程也就有可能一直阻塞
try {
mTask.run();
} finally {
synchronized (this) {
mDone = true;
notifyAll();
}
}
}
public boolean postAndWait(Handler handler, long timeout) {
//先发到handler所在线程的MQ中,等待执行 如果MQ已退出,压入失败 返回false
if (!handler.post(this)) {
return false;
}
//阻塞当前线程
synchronized (this) {
if (timeout > 0) {
//设置了超时等待
final long expirationTime = SystemClock.uptimeMillis() + timeout;
while (!mDone) {
long delay = expirationTime - SystemClock.uptimeMillis();
//没等待之前肯定大于0,等待苏醒后先检查mDone,如果还是false,看看有没有超时,如果超了就不等待了
if (delay <= 0) {
return false; // timeout
}
//进入等待状态,等待指定的delay后苏醒检查mDone,有可能delay还没到就被唤醒
try {
wait(delay);
} catch (InterruptedException ex) {
}
}
} else {
//没有设置超时 无限等待
while (!mDone) {
try {
wait();
} catch (InterruptedException ex) {
}
}
}
}
return true;
}
}