- STM32 HAL库封装函数查询
小小小小小小龙
STM32HAL库嵌入式硬件stm32
以下是STM32HAL库常用函数**的分类整理,按外设模块划分,便于快速查阅:1.系统与时钟-**系统初始化**-`HAL_Init()`:初始化HAL库和系统时钟。-`HAL_DeInit()`:复位所有外设,清理资源。-`HAL_Delay()`:毫秒级延时(基于SysTick)。-`HAL_IncTick()`:SysTick中断中更新系统时钟。-**时钟配置**-`HAL_RCC_OscC
- 合合信息启信宝助力国家自然科学基金委员会重点专项推进
人工智能大数据自然语言处理
近日,国家自然科学基金委员会公布了2024年度宏观调控专项“数据市场制度设计与关键技术”的评审结果。由中国科学院大学、中国社会科学院数量经济与技术经济研究所和清华大学共同申报的《数据资源统计监测与市场价值评估的理论与方法研究》项目成功获批立项。上海合合信息科技股份有限公司(股票代码:688615)作为课题支撑合作单位,将为课题研究团队提供多维度数据源支持与智能数据分析能力,共同为数字经济发展贡献力
- Java高级特性(基础知识点总结)
杰—
java
文章目录第三章:java高级API1️⃣什么是集合面试题:集合分为2个顶级接口:分别为Collection和Map面试题面试题2:面试题3Map接口:HashMap的数据结构面试题:面试题面试题包装类:JavaApi输入流和输出流会使用File类操作文件或目录File类的构造方法IO流的分类4大顶级抽象父类字符集基础知识:字节输出流写数据的步骤流的关闭与刷新第三章:java高级API1️⃣什么是集
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- 基于联邦学习的政务大数据平台应用研究
宋罗世家技术屋
计算机软件及理论发展专栏政务大数据
摘要当前数字政府建设已进入深水区,政务大数据平台作为数据底座支撑各类政务信息化应用,其隐私数据的安全性和合规性一直被业界广泛关注。联邦学习是一类解决数据孤岛的重要方法,基于联邦学习的政务一体化大数据平台应用具有较高的研究价值。首先,介绍政务大数据平台及联邦学习应用现状;然后,分析政务大数据平台面临的隐私数据的采集、分类分级、共享三大管理挑战;接着,阐述基于联邦学习的推荐算法和隐私集合求交技术的解决
- 一、系统分析师考试介绍
Rainbow酱
系统分析系统分析软考
科目1考点考试介绍考试报名、考试科目、大纲及考点分析、证书价值、常见问题。视频课程规划、推荐资料、学习方法。计算机组成与结构数据的表示:进制转换、编码表示、逻辑运算、浮点数。校验码:奇偶校验码、循环冗余校验码、海明校验码。计算机硬件:硬件组成、CPU、寄存器等。计算机指令:寻址方式、指令流水线计算。计算机体系结构:Flynn分类,指令系统CISC和RISC。计算机存储系统:分级存储、cache、存
- Git常用指令
香草加冰鸭
编码工具git源代码管理
Git常用指令1.仓库初始化与克隆2.提交与修改3.分支管理4.远程操作5.撤销与回退6.日志与历史7.其他实用命令注意事项Git是一个开源的分布式版本控制系统,可以有效、高效地处理从小型到大型项目的版本管理。Git的优势在于它的分布式架构,它允许用户在本地进行版本控制,同时也可以将更改推送到远程仓库。以下是常用的Git命令列表,按功能分类整理,方便快速查阅:1.仓库初始化与克隆gitinit初始
- 图像分类与目标检测算法
BugNest
AI算法分类目标检测ai人工智能图像处理
在计算机视觉领域,图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解,为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。一、图像分类算法图像分类是指将输入的图像划分为预定义的类别之一。这一过程的核心在于特征提取和分类器的设计。1.特征提取特征提取是图像分类的第一步,其目标是从图像中提取出能够区分不同类别的关键信息。传统的特征提取方
- Kivy教程大全之 使用 NumPy 和 Kivy 对 Android 设备进行图像分类
知识大胖
Python源码大全pythonkivynumpy
文章简介ANN架构。使用KV语言创建小部件树。创建Kivy应用程序。使用正确的NumPy版本。构建Android应用程序。了解更多信息本教程的重点是构建一个调用预训练的ANN来对图像进行分类的Android应用程序。这里不深入讨论准备数据集、构建、训练和优化ANN的步骤。在本教程中将仅对它们进行简要讨论。但不要担心——在不了解这些细节的情况下遵循本教程中的想法是可以的。如果您想了解它们,请查看我之
- 计算机视觉 工业相机、镜头、接口、光源概览及选型参考
坐望云起
深度学习从入门到精通计算机视觉数码相机人工智能镜头接口数据接口镜头
一、相机1、分类按芯片类型分类:CCD相机、CMOS相机按传感器的结构特性分类:线阵相机、面阵相机按输出信号方式分类:模拟相机、数码相机按输出色彩方式分类:黑白相机、彩色相机2、重要参数芯片尺寸芯片尺寸表示图像传感器感光区域的面积大小,直接决定了整个系统的物理放大率。相机的芯片尺寸如图所示。分辨率分辨率表示每英寸包含的像素数。对于图像来说,分辨率是非常重要的,决定了图像是否能够清晰地呈现:相机的分
- 机器学习: 逻辑回归
小源学AI
人工智能机器学习逻辑回归人工智能
概念与定义逻辑回归是一种用于分类问题的统计方法。它通过计算目标变量的概率来预测类别归属,并假设数据服从伯努利分布(二分类)或多项式分布(多分类)。逻辑回归模型输出的是概率值,通常使用sigmoid函数将线性组合映射到0和1之间。1.概念逻辑回归用于解决分类问题,特别是二分类问题。它通过估计输入变量与目标变量之间的关系来预测目标变量的类别。2.定义逻辑回归是一种广义线性模型,其核心思想是将线性组合通
- LINQ应用与实践:第 3 章 LINQ 查询操作符
caifox菜狐狸
LINQ应用与实践linqc#开发语言LambdaExpressionssql数据库
在LINQ(LanguageIntegratedQuery)中,查询操作符是实现数据查询和操作的核心工具。通过使用这些操作符,开发者可以轻松地对数据进行筛选、排序、分组、聚合等操作。本章将详细介绍LINQ提供的各种查询操作符,并通过实际案例展示它们的用法。通过学习本章内容,你将能够:掌握LINQ查询操作符的基本分类和功能。理解每种操作符的具体用途和应用场景。将所学知识应用于实际开发场景。1.限制操
- 计算机网络和网络安全
JUN12JUN12
php开发语言安全服务器
1.互联网的构成(1)网络边缘位于互联网边缘与互联网相连的计算机和其他设备,例如桌面计算机,移动计算机,服务器,其他智能终端设备(2)网络核心由互联端系统的分组交换设备和通信链路构成的网状网络,例如:分组交换器,链路层交换机,通信链路(光纤,铜缆,无线电,激光链路)2.网络的分类(1)个域网PAN(personalareanetwork)能在便携式消费电器与通信设备之间进行短距离通信的网络覆盖范围
- 大语言模型的分类及本地部署所需的硬件配置要求
Kelaru
LLM基础知识语言模型分类人工智能
1、大语言模型概念及作用大语言模型:(LargeLanguageModel,LLM)是一种基于深度学习的人工智能模型,它能够理解和生成自然语言[1]。简单来说,它就像一个“超级大脑”,能够处理各种语言任务,比如写文章、回答问题、翻译语言等;它通过训练大量的文本数据,学习语言的结构、语法、语义以及上下文关联,从而能够理解和生成与人类语言相似的文本。举个例子:如果你问它一个问题,比如:“为什么天空是蓝
- 逻辑回归不能解决非线性问题,而svm可以解决
江河地笑
机器学习逻辑回归支持向量机算法
逻辑回归和支持向量机(SVM)是两种常用的分类算法,它们在处理数据时有一些不同的特点,特别是在面对非线性问题时。1.逻辑回归逻辑回归本质上是一个线性分类模型。它的目的是寻找一个最适合数据的直线(或超平面),用来将不同类别的数据分开。它的分类决策是基于输入特征的加权和,即:由于逻辑回归是线性模型,因此它只能在数据集是线性可分的情况下表现良好。如果数据的分布是非线性的,逻辑回归可能无法有效地分类,因为
- GitHub 上的开源项目推荐
临水逸
github开源
GitHub上的开源项目有成千上万,涵盖了从前端框架到数据科学、机器学习、系统工具等各个领域。不同的人根据兴趣和需求,可能会有不同的排名。不过,一些开源项目因为其广泛的应用、社区支持和技术创新,通常被认为是“最好”的开源项目之一。下面是一些广受欢迎、常被认为是GitHub上最好的开源项目(按领域分类):1.开发工具与库Bootstrap最流行的前端框架之一,用于快速开发响应式和现代化的网页。Vue
- MySQL入门与安全防护:小学生也能懂的数据库实战指南
Aishenyanying33
数据库mysql安全
大家好!今天我要用最有趣的方式带大家学习MySQL和安全防护,就像学习如何保护自己的"数据库玩具箱"一样!我会用很多生活中的例子来讲解,准备好了吗?✨MySQL是什么?就像你有一个装满玩具的箱子,MySQL就是一个超级智能的"玩具整理大师"。它能帮我们:把数据分类存放(比如你的乐高、玩偶、卡片)快速找到想要的玩具(比如"找出所有红色积木")♂️设置密码锁,不让别人乱动你的玩具常用命令实战(就像玩具
- 2020年上半年中级软件设计师上午试题的知识点(附试卷及答案)
xiaohiiii
软件设计师数据库算法数据结构uml设计模式
以下是2020年上半年中级软件设计师上午试题的知识点分类整理,详细解释涉及的定义和知识点,供背诵记忆。1.计算机组成原理CPU执行算术运算或逻辑运算时,常将源操作数和结果暂存在()中。累加器(AC):用于暂存算术逻辑单元(ALU)的运算结果。程序计数器(PC):存放下一条要执行的指令地址。指令寄存器(IR):存放当前正在执行的指令。地址寄存器(AR):保存当前CPU访问的内存地址。判断字长为16位
- java项目当中使用redis
ok!不当人
java项目的技术点javaredis开发语言
分类数据一般情况下不会做过多的修改,因此可以将分类数据进行缓存,以提高页面的加载速度。1使用缓存先将首页接口获取一级分类数据缓存步骤:1、在service-product微服务中集成SpringDataRedis,如下所示:在service-product的pom.xml文件中添加如下依赖:org.springframework.bootspring-boot-starter-cacheorg.s
- 中间件是什么?
努力努力再努力la
中间件
目录一、中间件是什么?二、为什么要使用中间件?三、中间件有哪些特点?四、中间件通常包括以下几个方面:五、中间件可以分为以下几种分类:基础中间件消息中间件数据库中间件容器中间件Web服务器中间件应用服务器中间件中间件发展历程中间件的发展历程、应用场景、架构_努力努力再努力la的博客-CSDN博客一、中间件是什么?中间件定义:中间件是介于应用系统和系统软件之间的一类软件,它使用系统软件所提供的基础服务
- 大语言模型常见任务及评测数据集汇总(一):70 余个数据集!
大F的智能小课
大模型实战人工智能
1.文本分类1.1.中文文本分类数据集:THUCNews:清华大学推出的中文新闻文本数据集,包含了74万篇新闻文章,覆盖了10个类别。LCQMC:哈尔滨工业大学发布的数据集,主要用于中文句子匹配任务,也常用于文本分类。BQCorpus:同样用于中文句子匹配,也可用于文本分类。1.2.英文文本分类数据集:IMDb:包含50,000条影评数据,分为正面和负面两类,常用于情感分析。20Newsgroup
- Swagger、OpenAPI和springdoc-openapi-ui入门
Leo_Hu666
swaggerspringbootspring
统一的API接口平台有了统一的API接口平台,不管对内还是对外,都能更好做到:统一接口开发、统一接口管理、统一接口开放服务。统一接口开发:包括API接口的命名、分类、格式、接口文档、接口变更记录、接口发布、接口测试、接口日记等,都要统一风格、规范标准和约束。统一接口管理:包括API接口的升级、增加参数、部署、性能监控、错误日志,同时结合开发、测试、运维、文档等形成整套的研发体系和闭环。统一接口开放
- 深度学习练手小例子——cifar10数据集分类问题
☆cwlulu
深度学习分类人工智能
CIFAR-10是一个经典的计算机视觉数据集,广泛用于图像分类任务。它包含10个类别的60,000张彩色图像,每张图像的大小是32x32像素。数据集被分为50,000张训练图像和10,000张测试图像。每个类别包含6,000张图像,具体类别包括:飞机(airplane)汽车(automobile)鸟(bird)猫(cat)鹿(deer)狗(dog)青蛙(frog)马(horse)船(ship)卡车
- 一文读懂RAG
wangziling123456
人工智能深度学习
目录一、RAG是什么?二、为什么需要RAG?三、RAG的特点四、基础RAG架构数据准备阶段应用阶段:五、RAG分类基础RAG(NaiveRAG)缺点高级RAG(AdvancedRAG)模块化RAG(ModularRAG)六、RAG(检索增强生成)vsFine-Tuning(微调)八、高效和准确的检索1)来源检索源的类型检索单元的粒度2)索引优化1.分块策略2.元数据附件3.结构指数3)查询优化1.
- Laplace(拉普拉斯)平滑
郑万通
机器学习平滑技术拉普拉斯平滑机器学习Laplace
平滑技术平滑技术是为了解决训练集的数据稀松问题。零概率问题,就是在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。在文本分类的问题中,当一个词语没有在训练样本中出现,该词语调概率为0,使用连乘计算文本出现概率时也为0。这是不合理的,不能因为一个事件没有观察到就武断的认为该事件的概率是0。一般的m阶马尔科夫链转移概率是这样训练的:P(cm+1|c1c
- 第 1 课 树莓派5介绍
嵌入式老牛
树莓派之基本应用单片机嵌入式硬件
详细的介绍可参见:https://www.raspberrypi.com/documentation/computers/raspberry-pi.htmlRaspberryPi,中文名为“树莓派”,简写为Rpi,是一款只有信用卡大小的计算机的计算机,由英国的树莓派基金会所开发,被赋予的希望是能够帮助全世界的孩子学习编程,并能够了解计算机是如何工作的。树莓派可连接键盘、鼠标和网线,同时拥有视觉模拟
- DeepSeek计算机视觉(Computer Vision)基础与实践
Evaporator Core
#DeepSeek快速入门计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)是人工智能领域的一个重要分支,专注于让计算机理解和处理图像和视频数据。计算机视觉技术广泛应用于图像分类、目标检测、图像分割、人脸识别等场景。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练计算机视觉模型。本文将详细介绍如何使用DeepSeek进行计算机视觉的基础与实践,并通过代码示例帮助你掌握这些技巧。1.计算机视觉的基本概念计算机视觉的
- JavaCV进阶opencv图像处理:扫描并识别视频中的二维码
eguid_1
#JavaCV进阶之opencvJavaCV图像处理合集扫描视频二维码opencv识别二维码javacv检测二维码java扫描检测二维码识别二维码
人脸检测识别javacv进阶opencv图像检测/识别系列目录人脸检测识别JavaCV进阶opencv图像处理:摄像头图像人脸检测JavaCV进阶opencv图像处理:ffmpeg视频图像画面人脸检测JavaCV进阶opencv图像处理:批量人脸图像分类训练JavaCV进阶opencv图像处理:摄像头图像人脸识别二维码识别二维码识别JavaCV进阶opencv图像处理:扫描并识别摄像头中的二维码
- 编写测试用例注意事项
忙起来,拿offer
软件测试单元测试
1、测试用例的标准:1)能对穷举场景设计测试点2)能对限定边界规则设计测试点3)能对多条件依赖关系设置测试点4)能对于项目业务涉及测试点2、解决方法:1)等价类划分法:①说明:在所有测试数据中,对具有某种共同特征的数据集合,进行划分。②分类:Ⅰ、有效等价类:满足需求的数据集合。(使用的时候取其中一个就行)Ⅱ、无效等价类:不满足需求的数据集合。有效等价和单个无效等价各取一个即可。③步骤:Ⅰ、明确需求
- 深度学习语义分割实战:ResNet 与 ViT 结合的模型解析
高山仰星
深度学习
1.引言语义分割是计算机视觉中的重要任务,其目标是将输入图像中的每个像素分类到特定的类别。本项目结合了ResNet(ResidualNetwork)和ViT(VisionTransformer),构建了高性能的语义分割模型。本文将详细解析该模型的架构、训练流程及其应用。2.语义分割模型解析本项目采用ResNet和ViT结合的方式进行语义分割,并使用CBAM注意力机制增强特征提取能力。涉及的核心文件
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f