B站刘二大人up主pytorch教程P7代码+tips

1.读取数据的问题说明

请注意:up主的diabetes.csv.gz是自己创建的,他把x,y合并到了一个文件之中,且x的形状为(759,8)

而如果我们用sklearn文件夹下的两个文件分别读取,不仅会产生报错(下图所示),而且x的大小还和视频中的不一致。

#####sklearn文件夹下数据
import torch
import numpy as np
import matplotlib.pyplot as plt

x = np.loadtxt('diabetes_data.csv.gz',delimiter= ',',dtype=np.float32)
y = np.loadtxt('diabetes_target.csv.gz',delimiter= ',',dtype=np.float32)
x_data = torch.from_numpy(x)
y_data = torch.from_numpy(y)
print(x_data.size(),x_data)
print("___________________________")
print(y_data.size(),y_data)

报错:

 这是因为CSV表格中是以空格来划分数字的,我们将“,”改为“ ”

#####sklearn文件夹下数据
import torch
import numpy as np
import matplotlib.pyplot as plt

x = np.loadtxt('diabetes_data.csv.gz',delimiter= ' ',dtype=np.float32)
y = np.loadtxt('diabetes_target.csv.gz',delimiter= ' ',dtype=np.float32)
x_data = torch.from_numpy(x)
y_data = torch.from_numpy(y)
print(x_data.size(),x_data)
print("___________________________")
print(y_data.size(),y_data)

会得到以下结果:

B站刘二大人up主pytorch教程P7代码+tips_第1张图片

 所显示的x大小为(442,10),因此如果直接将这个输入网络一定会出现维度不匹配的报错!

 所以!!!

要用up主提供的diabetes.csv.gz文件  

附上链接:https://pan.baidu.com/s/1Snf5mrC14bbNeKNBLlh0zA 
提取码:kd03

解决了数据集问题P7的代码就没有难度啦!

2.全部代码

我使用了不同的激活函数(relu+sigmoid)收敛更快些!

import numpy as np
xy = np.loadtxt('diabetes.csv.gz',delimiter=',',dtype = np.float32)
x_data = torch.from_numpy(xy[:,:-1])
print(x_data.size())
y_data = torch.from_numpy(xy[:,[-1]])
print(y_data.size())


class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)  ####8为输入维度  1为输出维度  改为(8,2)可在后边再加一层(2,1)的层
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 1)
        self.activate1 = torch.nn.ReLU()
        self.activate2 = torch.nn.Sigmoid()
        

    def forward(self,x):
        x = self.activate1(self.linear1(x))
        x = self.activate1(self.linear2(x))
        x = self.activate2(self.linear3(x))
        return x
model = Model()
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(),lr = 0.1)


for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

输出结果:
B站刘二大人up主pytorch教程P7代码+tips_第2张图片

B站刘二大人up主pytorch教程P7代码+tips_第3张图片 

1000个epoch后,loss可以达到0.46左右~

还有好像 用up主的代码会出现一些warning,应该是这里:

criterion = torch.nn.BCELoss(size_average = True)

根据信息改为:

criterion = torch.nn.BCELoss(reduction='mean')

就OK了!

附上绘制loss图和acc图的代码:(就绘制了一下 没调参优化 意思到了~~)

import numpy as np
import torch
import matplotlib.pyplot as plt
#####新建空列表存储绘图所用的数据
epoch_list = []
loss_list = []
acc_list = []
    
xy = np.loadtxt('diabetes.csv.gz',delimiter=',',dtype = np.float32)
x_data = torch.from_numpy(xy[:,:-1])
print(x_data.size())
y_data = torch.from_numpy(xy[:,[-1]])
print(y_data.size())


class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)  ####8为输入维度  1为输出维度  改为(8,2)可在后边再加一层(2,1)的层
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 1)
        self.activate1 = torch.nn.ReLU()
        self.activate2 = torch.nn.Sigmoid()
        

    def forward(self,x):
        x = self.activate1(self.linear1(x))
        x = self.activate1(self.linear2(x))
        x = self.activate2(self.linear3(x))
        return x
model = Model()
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(),lr = 0.1)


for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
    
    epoch_list.append(epoch)
    loss_list.append(loss.item())
    
    y_pred_label = torch.where(y_pred >= 0.5, torch.tensor([1.0]), torch.tensor([0.0]))
    accuracy = torch.eq(y_pred_label, y_data).sum().item() / y_data.size(0)
    acc_list.append(accuracy)
    print("loss = ", loss.item(), "acc = ", accuracy)

plt.plot(epoch_list, loss_list)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()
plt.plot(epoch_list,acc_list)
plt.xlabel('epoch')
plt.ylabel('accuracy')
plt.show()

B站刘二大人up主pytorch教程P7代码+tips_第4张图片

B站刘二大人up主pytorch教程P7代码+tips_第5张图片 

(救命,好丑...)

如果以十个epoch为单位作图应该会得到比较好看的图...

你可能感兴趣的:(python,深度学习)