YOLO5Landmark 实验记录

目录

  • 前言
  • yolo5s6
      • 训练:
  • yolo5s6 + NoPretrain
    • 训练:
    • 测试
  • yolo7stem
    • 训练
    • 测试
    • 4gpu+32bs训练
  • yolo7 + RepVGGBlockStem
    • 训练:
    • 测试 best.pt:
  • yolo7 + RepStem
    • 训练:
    • 测试 best.pt:
  • yolo7M + RepStem
    • 训练:
    • 测试 best.pt:
  • yolo7L + 4GPU + RepStem
    • 训练:
    • 测试 best.pt:
  • yolo7L + 1GPU + RepStem
    • 训练:
    • 测试 best.pt:
  • yolo7 + RepStem + RepBot
    • 训练:
    • 测试 best.pt:
  • yolo7 + RepStem + RepBot + IKeypoint
    • 训练:
    • 测试 best.pt:
  • yolo7 + RepStem + ShuffleBot
    • 训练:
    • 测试 best.pt:
  • yolo7 + RepStem + Shuffle2Bot
    • 训练:
    • 测试 best.pt:
  • yolo7 + RepStem + RepShuffle2Bot (RepVGG Block试下,看能否解决维度大于2)
    • 训练:
    • 测试 best.pt:
  • yolo7 + RepStem + RepShuffle2Bot + Ikeypoint (RepVGG Block能解决维度大于2)
    • 训练:
    • 测试 best.pt:
  • yolo7 + RepStem + RepShuffle2Bot + Ikeypoint +DW-CNN KPoint
    • 训练:
    • 测试 best.pt:
  • yolo7m + RepStem + RepShuffle2Bot + Ikeypoint
    • 训练:2GPU
    • 测试 best.pt:
  • 训练(1GPU)
    • 测试 best.pt:
  • yolo7L + RepStem + RepShuffle2Bot + Ikeypoint
    • 训练:4GPU
    • 测试 best.pt:
  • 训练(1GPU)
    • 测试 best.pt:
  • yolo5L + RepStem + RepShuffle2Bot + Ikeypoint (RepVGG Block能解决维度大于2)
    • 训练:
    • 测试 best.pt:
  • yolo7 + RepStem + RepShuffle2Bot (RepConv因为维度为1,导致fuse出错)
    • 训练:
    • 测试 best.pt:
  • yolo7 + RepStem + RepShuffle2Bot (RepConv后去掉BN层)
    • 训练:
    • 测试 best.pt:
  • yolo7 + RepStem + RepShuffle2Bot (DW换成group/2)
    • 训练:
    • 测试 best.pt:
  • 二、使用步骤
    • 1.引入库


前言

这里记录每一次运行的实验记录


yolo5s6

本地运行:

训练:

Model Summary: 377 layers, 13149336 parameters, 13149336 gradients, 18.6 GFLOPS

## 测试 last.pt:
 0.925       0.982       0.958       0.913
nme:0.04828772978002897
Speed: 4.0/0.6/4.7 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp4

### 测试 best.pt:
 0.93       0.955       0.978       0.933
nme:0.04658510462525046
Speed: 4.1/0.7/4.8 ms inference/NMS/total per 640x640 image at batch-size 4

yolo5s6 + NoPretrain

本地运行:

训练:

377 layers, 13149336 parameters, 13149336 gradients, 18.6 GFLOPS

Transferred 155/480 items from weights/yolov5s.pt

测试

Fusing layers…
Model Summary: 300 layers, 13135096 parameters, 0 gradients, 18.4 GFLOPS

0.952 0.96 0.982 0.94
nme:0.04449336785480576
Speed: 4.0/0.6/4.6 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp6

yolo7stem

训练

Model Summary: 385 layers, 13142776 parameters, 13142776 gradients, 18.0 GFLOPS

Transferred 12/492 items from weights/yolov5s.pt

测试

Fusing layers…
Model Summary: 306 layers, 13128472 parameters, 0 gradients, 17.8 GFLOPS

0.946 0.951 0.979 0.931
nme:0.04381672315071253
Speed: 4.2/0.6/4.7 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp7

4gpu+32bs训练

all         554         554       0.923       0.968       0.979       0.931

nme:0.04370922955195993
Speed: 4.8/5.5/10.3 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp2

IOU=0.5 conf =0.1:
all 554 554 0.923 0.968 0.98 0.931
nme:0.04878550926798806
Speed: 4.7/3.8/8.5 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp3

yolo7 + RepVGGBlockStem

本地运行:

训练:

Model Summary: 395 layers, 13144024 parameters, 13144024 gradients, 18.2 GFLOPS

Transferred 30/504 items from weights/yolov5s6.pt

测试 best.pt:

Fusing layers…
Model Summary: 308 layers, 13128472 parameters, 10144 gradients, 17.8 GFLOPS

0.943 0.958 0.978 0.929
nme:0.04634316943127357
Speed: 4.2/0.6/4.8 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp5

yolo7 + RepStem

本地运行:

训练:

Model Summary: 393 layers, 13144024 parameters, 13144024 gradients, 18.2 GFLOPS

Transferred 12/504 items from weights/yolov5s.pt

测试 best.pt:

Fusing layers…
RepConv.fuse_repvgg_block
RepConv.fuse_repvgg_block
Model Summary: 306 layers, 13128472 parameters, 10144 gradients, 17.8 GFLOPS

0.952 0.939 0.981 0.935
nme:0.043321637678518515
Speed: 4.3/0.6/4.8 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp8

yolo7M + RepStem

python train.py --data w300_kpts.yaml --cfg yolov5m6_w300kpts_RepStem.yaml --weights weights/yolov5m6.pt --batch-size 32 --workers 4 --device 3 --img 640 --kpt-label

本地运行:

训练:

Model Summary: 528 layers, 36628248 parameters, 36628248 gradients, 53.6 GFLOPS

Transferred 42/684 items from weights/yolov5m6.pt

Image sizes 640 train, 640 test
Using 4 dataloader workers batch size 20

(yolo) root@f5e52d307978:~/Projects/yolo5landmark# python test300WV1.py --data w300_kpts.yaml --img 640 --conf 0.1 --iou 0.5 --batch-size 4 --device 2 --weights runs/train/exp6/weights/best.pt --kpt-label

测试 best.pt:

YOLOv5 � 2022-12-30 torch 1.11.0 CUDA:2 (NVIDIA GeForce RTX 3090, 24268.3125MB)

Fusing layers…
RepConv.fuse_repvgg_block
RepConv.fuse_repvgg_block
Model Summary: 411 layers, 36598104 parameters, 22128 gradients, 53.0 GFLOPS

all 554 554 0.931 0.977 0.983 0.936
nme:0.043028827631862665
Speed: 6.7/4.9/11.6 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp5


yolo7L + 4GPU + RepStem

python train.py --data w300_kpts.yaml --cfg yolov5l6_w300kpts_RepStem.yaml --weights weights/yolov5l6.pt --batch-size 16 --workers 4 --device 0,1,2,3 --img 640 --kpt-label

本地运行:

训练:

Model Summary: 663 layers, 78207960 parameters, 78207960 gradients, 119.4 GFLOPS

Transferred 54/864 items from weights/yolov5l6.pt
Scaled weight_decay = 0.00046875
Optimizer groups: 149 .bias, 149 conv.weight, 141 other

Image sizes 640 train, 640 test
Using 4 dataloader workers batch size 16
all 554 554 0.896 0.962 0.964 0.916
300 epochs completed in 15.514 hours.

(yolo) root@f5e52d307978:~/Projects/yolo5landmark# python test300WV1.py --data w300_kpts.yaml --img 640 --conf 0.1 --iou 0.5 --batch-size 4 --device 2 --weights runs/train/exp11/weights/best.pt --kpt-label

测试 best.pt:

YOLOv5 � 2022-12-30 torch 1.11.0 CUDA:2 (NVIDIA GeForce RTX 3090, 24268.3125MB)

Model Summary: 516 layers, 78158680 parameters, 38720 gradients, 118.4 GFLOPS

all 554 554 0.897 0.958 0.965 0.919
nme:0.04442429334286103
Speed: 6.2/0.7/6.9 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp6

yolo7L + 1GPU + RepStem

python train.py --data w300_kpts.yaml --cfg yolov5l6_w300kpts_RepStem.yaml --weights weights/yolov5l6.pt --batch-size 8 --workers 2 --device 0 --img 640 --kpt-label

本地运行:

训练:

Model Summary: 663 layers, 78207960 parameters, 78207960 gradients, 119.4 GFLOPS

Transferred 54/864 items from weights/yolov5l6.pt
Scaled weight_decay = 0.00046875
Optimizer groups: 149 .bias, 149 conv.weight, 141 other

Image sizes 640 train, 640 test
Using 2 dataloader workers batch size 8

0.956 0.946 0.981 0.933
300 epochs completed in 14.915 hours.

Optimizer stripped from runs/train/exp13/weights/last.pt, 157.0MB

(yolo) root@f5e52d307978:~/Projects/yolo5landmark# python test300WV1.py --data w300_kpts.yaml --img 640 --conf 0.001 --iou 0.65 --batch-size 4 --device 2 --weights runs/train/exp13/weights/best.pt --kpt-label

测试 best.pt:

YOLOv5 � 2022-12-30 torch 1.11.0 CUDA:2 (NVIDIA GeForce RTX 3090, 24268.3125MB)

Model Summary: 516 layers, 78158680 parameters, 38720 gradients, 118.4 GFLOPS

0.948 0.947 0.981 0.935
nme:0.04148737189304469
Speed: 7.7/2.9/10.5 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp7

yolo7 + RepStem + RepBot

本地运行:

训练:

Model Summary: 648 layers, 13497112 parameters, 13497112 gradients, 18.9 GFLOPS

Transferred 337/864 items from runs/train/exp5/weights/best.pt

测试 best.pt:

Model Summary: 411 layers, 13130488 parameters, 3083104 gradients, 17.8 GFLOPS

0.941 0.958 0.98 0.934
nme:0.04262262558182343
Speed: 4.7/0.6/5.3 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp9

yolo7 + RepStem + RepBot + IKeypoint

本地运行:

训练:

Model Summary: 658 layers, 13498464 parameters, 13498464 gradients, 18.9 GFLOPS
Transferred 862/872 items from runs/train/exp6/weights/best.pt

测试 best.pt:

Model Summary: 421 layers, 13131840 parameters, 3083104 gradients, 17.8 GFLOPS

0.934 0.975 0.98 0.938
nme:0.04131272826509372
Speed: 4.7/0.6/5.3 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp15

yolo7 + RepStem + ShuffleBot

本地运行:

训练:

Model Summary: 423 layers, 9911656 parameters, 9911656 gradients, 12.1 GFLOPS
Transferred 322/594 items from runs/train/exp5/weights/best.pt

测试 best.pt:

Fusing layers…
RepConv.fuse_repvgg_block
RepConv.fuse_repvgg_block
Model Summary: 366 layers, 9900136 parameters, 10144 gradients, 11.8 GFLOPS

0.951 0.942 0.977 0.929
nme:0.04308880185174582
Speed: 4.0/0.6/4.6 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp10

yolo7 + RepStem + Shuffle2Bot

本地运行:

训练:

Model Summary: 423 layers, 13254648 parameters, 13254648 gradients, 17.2 GFLOPS
Transferred 246/594 items from runs/train/exp8/weights/best.pt

测试 best.pt:

Fusing layers…
RepConv.fuse_repvgg_block
RepConv.fuse_repvgg_block
Model Summary: 366 layers, 13239864 parameters, 10144 gradients, 16.9 GFLOPS

0.936 0.955 0.978 0.931
nme:0.042702530044724414
Speed: 4.7/0.6/5.4 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp11

yolo7 + RepStem + RepShuffle2Bot (RepVGG Block试下,看能否解决维度大于2)

本地运行:

训练:

Model Summary: 558 layers, 13268760 parameters, 13268760 gradients, 17.3 GFLOPS
Transferred 577/834 items from runs/train/exp9/weights/best.pt

测试 best.pt:

switch_to_deploy
Model Summary: 411 layers, 13241880 parameters, 30304 gradients, 16.9 GFLOPS

0.922 0.968 0.979 0.932
nme:0.04306018083638277
Speed: 4.8/0.6/5.4 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp16

yolo7 + RepStem + RepShuffle2Bot + Ikeypoint (RepVGG Block能解决维度大于2)

本地运行:

训练:

Model Summary: 568 layers, 13270112 parameters, 13270112 gradients, 17.3 GFLOPS
Transferred 832/842 items from runs/train/exp13/weights/best.pt

测试 best.pt:

switch_to_deploy
Model Summary: 421 layers, 13243232 parameters, 30304 gradients, 16.9 GFLOPS

0.937 0.962 0.976 0.933
nme:0.039646686695125256
Speed: 4.8/0.7/5.5 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp17

yolo7 + RepStem + RepShuffle2Bot + Ikeypoint +DW-CNN KPoint

本地运行:

训练:

Model Summary: 588 layers, 13367392 parameters, 13367392 gradients, 17.5 GFLOPS
Transferred 832/858 items from runs/train/exp15/weights/best.pt
Scaled weight_decay = 0.0005
Optimizer groups: 157 .bias, 127 conv.weight, 141 other
Image sizes 640 train, 640 test
Using 2 dataloader workers
Logging results to runs/train/exp19

测试 best.pt:

LKA换成Conv2d-Det+ImplictA-Kpt
all 554 554 0.937 0.969 0.977 0.935
Model Summary: 421 layers, 13245608 parameters, 30304 gradients, 16.9 GFLOPS
nme:0.039575465426819015
Speed: 10.6/0.7/11.3 ms inference/NMS/total per 640x640 image at batch-size 1
Results saved to runs/test/exp21

yolo7m + RepStem + RepShuffle2Bot + Ikeypoint

训练:2GPU

python train.py --data w300_kpts.yaml --cfg yolov5m6_w300kpts_RepStem_RepShuffle2Bot_IKeypoint.yaml --weights runs/train/exp6/weights/best.pt --batch-size 16 --workers 4 --device 3,4 --img 640 --kpt-label
Logging results to runs/train/exp17
0.948 0.964 0.983 0.94
300 epochs completed in 9.100 hours.

Optimizer stripped from runs/train/exp17/weights/last.pt, 62.4MB

测试 best.pt:

(yolo) root@f5e52d307978:~/Projects/yolo5landmark# python test300WV1.py --data w300_kpts.yaml --img 640 --conf 0.001 --iou 0.65 --batch-size 4 --device 2 --weights runs/train/exp17/weights/best.pt --kpt-label

0.952 0.962 0.984 0.941
nme:0.041504019045823154
Speed: 7.6/2.2/9.9 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp9

训练(1GPU)

python train.py --data w300_kpts.yaml --cfg yolov5m6_w300kpts_RepStem_RepShuffle2Bot_IKeypoint.yaml --weights runs/train/exp6/weights/best.pt --batch-size 8 --workers 2 --device 7 --img 640 --kpt-label

Model Summary: 868 layers, 30795360 parameters, 30795360 gradients, 40.3 GFLOPS
Transferred 201/1352 items from runs/train/exp6/weights/best.pt
Image sizes 640 train, 640 test
Using 2 dataloader workers
Logging results to runs/train/exp18

测试 best.pt:

(yolo) root@f5e52d307978:~/Projects/yolo5landmark# python test300WV1.py --data w300_kpts.yaml --img 640 --conf 0.001 --iou 0.65 --batch-size 4 --device 2 --weights runs/train/exp18/weights/best.pt --kpt-label

0.938 0.962 0.975 0.93
nme:0.04204403050927501
Speed: 8.0/3.0/11.0 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp10

yolo7L + RepStem + RepShuffle2Bot + Ikeypoint

训练:4GPU

python train.py --data w300_kpts.yaml --cfg yolov5l6_w300kpts_RepStem_RepShuffle2Bot_IKeypoint.yaml --weights runs/train/exp13/weights/best.pt --batch-size 16 --workers 4 --device 3,4,5,6 --img 640 --kpt-label

Model Summary: 1168 layers, 56945568 parameters, 56945568 gradients, 75.5 GFLOPS

Transferred 201/1862 items from runs/train/exp13/weights/best.pt
Image sizes 640 train, 640 test
Using 4 dataloader workers
Logging results to runs/train/exp19

测试 best.pt:

(yolo) root@f5e52d307978:~/Projects/yolo5landmark# python test300WV1.py --data w300_kpts.yaml --img 640 --conf 0.001 --iou 0.65 --batch-size 4 --device 2 --weights runs/train/exp17/weights/best.pt --kpt-label

0.952 0.962 0.984 0.941
nme:0.041504019045823154
Speed: 7.6/2.2/9.9 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp9

训练(1GPU)

python train.py --data w300_kpts.yaml --cfg yolov5l6_w300kpts_RepStem_RepShuffle2Bot_IKeypoint.yaml --weights runs/train/exp13/weights/best.pt --batch-size 8 --workers 2 --device 7 --img 640 --kpt-label

Model Summary: 1168 layers, 56945568 parameters, 56945568 gradients, 75.5 GFLOPS

Transferred 201/1862 items from runs/train/exp13/weights/best.pt
Image sizes 640 train, 640 test
Using 2 dataloader workers
Logging results to runs/train/exp20
Starting training for 300 epochs…

测试 best.pt:

(yolo) root@f5e52d307978:~/Projects/yolo5landmark# python test300WV1.py --data w300_kpts.yaml --img 640 --conf 0.001 --iou 0.65 --batch-size 4 --device 2 --weights runs/train/exp18/weights/best.pt --kpt-label

0.938 0.962 0.975 0.93
nme:0.04204403050927501
Speed: 8.0/3.0/11.0 ms inference/NMS/total per 640x640 image at batch-size 4
Results saved to runs/test/exp10

yolo5L + RepStem + RepShuffle2Bot + Ikeypoint (RepVGG Block能解决维度大于2)

本地运行:

训练:

Model Summary: 1168 layers, 56945568 parameters, 56945568 gradients, 75.5 GFLOPS
Transferred 1862/1862 items from runs/train/exp17/weights/last.pt

测试 best.pt:

switch_to_deploy
Model Summary: 841 layers, 56841376 parameters, 159680 gradients, 74.2 GFLOPS

nme:0.041191850604322004
Speed: 19.4/0.7/20.2 ms inference/NMS/total per 640x640 image at batch-size 1
Results saved to runs/test/exp19

yolo7 + RepStem + RepShuffle2Bot (RepConv因为维度为1,导致fuse出错)

本地运行:

训练:

Model Summary: 543 layers, 13268760 parameters, 13268760 gradients, 17.3 GFLOPS

Transferred 577/834 items from runs/train/exp9/weights/best.pt

测试 best.pt:

Model Summary: 396 layers, 13241880 parameters, 30304 gradients, 16.9 GFLOPS

0.842 0.791 0.794 0.598
nme:0.1406149227627627
Speed: 4.8/0.6/5.4 ms inference/NMS/total per 640x640 image at batch-size 4

yolo7 + RepStem + RepShuffle2Bot (RepConv后去掉BN层)

本地运行:

训练:

Model Summary: 528 layers, 13264728 parameters, 13264728 gradients, 17.3 GFLOPS

Transferred 412/759 items from runs/train/exp9/weights/best.pt

测试 best.pt:

出错

yolo7 + RepStem + RepShuffle2Bot (DW换成group/2)

本地运行:

训练:

Model Summary: 543 layers, 9928792 parameters, 9928792 gradients, 12.2 GFLOPS

Transferred 246/834 items from runs/train/exp9/weights/best.pt

测试 best.pt:

出错

二、使用步骤

1.引入库

代码如下(示例):

{
    // Use IntelliSense to learn about possible attributes.
    // Hover to view descriptions of existing attributes.
    // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
    "version": "0.2.0",
    "configurations": [
        {
            "name": "Python: Current File",
            "type": "python",
            "request": "launch",
            "program": "${file}",
            "console": "integratedTerminal",
            "args": [
                // // preprocess data_300W or generate300W challenge and common dataset
                // "data_300W"
                // "COFW"
                // "data_300W_COFW_WFLW"

                // // train yolo_pose
                // "--data","coco_kpts.yaml",
                // "--cfg", "yolov5s6_kpts.yaml",
                // "--weights", "weights/yolov5s6.pt",
                // "--batch-size", "4",
                // "--img", "640",
                // "--kpt-label"

                // // // train yolo_facepose
                // "--data","w300_kpts.yaml",
                // // "--cfg", "yolov5s6_w300kpts_SimpleRepStem_ShuffleCSPAIAuxDetect.yaml",   
                // "--cfg", "yolov5s6_w300kpts_SimpleRepStem_ShuffleCSPA.yaml",  // exp90 117  118   122
                // // "--cfg", "yolov5s6_w300kpts_SimpleRepStem_ResX.yaml",  // exp77  +  113
                // // "--cfg", "yolov5s6_w300kpts_SimpleRepStemRepBot.yaml",  //119
                // // "--cfg", "yolov5s6_w300kpts_SimpleRepStemGhostBot.yaml",
                // // "--cfg", "yolov5s6_w300kpts_SimpleRepStem.yaml",  //110
                // // "--resume", "runs/train/exp72/weights/last.pt",
                // // "--cfg", "yolov5s6_w300kpts_stem_rep.yaml",
                // // "--resume", "runs/train/exp57/weights/last.pt",
                // // "--cfg", "yolov5s6_w300kpts.yaml", //109
                // // "--resume", "runs/train/exp109/weights/last.pt",
                // // "--cfg", "yolov5s6_w300kpts_stem_yolo7.yaml",
                // // "--cfg", "yolov5s6_w300kpts_repmore.yaml",
                // // "--resume", "runs/train/exp49/weights/last.pt",
                // // "--cfg", "yolov5s6_w300kpts_ti_lite.yaml",
                // // "--resume", "runs/train/exp28/weights/last.pt",
                // // "--resume", "runs/train/exp/weights/last.pt",
                // // "--cfg", "yolov5s6_w300kpts_ti_lite_deconv.yaml",
                // // "--resume", "runs/train/exp27/weights/last.pt",
                // // "--cfg", "yolov5l6_w300kpts_ti_lite.yaml",
                // // "--resume", "runs/train/exp22/weights/last.pt",
                // "--weights", "weights/yolov5s.pt",
                // // "--weights", "weights/yolov5s6_640_ti_lite.pt",
                // "--batch-size", "8",
                // "--img", "640",
                // // "--img", "960",
                // // "--workers","8",
                // "--epochs","300",
                // // "--bbox_interval","30",
                // "--kpt-label",
                // "--adam"
                // // "--facekpt-label"
                // // // python train.py --data coco_kpts.yaml --cfg yolov5s6_kpts.yaml --weights 'path to the pre-trained ckpts' --batch-size 64 --img 640 --kpt-label


                // // //test yolo_facepose
                // "--data","w300_kpts.yaml",
                // // "--img", "960",                
                // "--img", "640",                
                // "--iou"," 0.5",  // use default value 0.65
                // "--conf", "0.1",  //original 
                // // "--conf", "0.02",   
                // // "--conf", "0.3",
                // "--batch-size","16",
                // // "--weights", "weights/yolov5s6.pt",
                // "--weights", "runs/train/exp118/weights/best.pt",
                // "--kpt-label"
                // //"--facekpt-label"
                // // python test.py --data coco_kpts.yaml --img 960 --conf 0.001 --iou 0.65 --weights "path to the pre-trained ckpt" --kpt-label


                // to run detect_face
                "--img-size", "800",
                "--iou"," 0.65",
                "--conf", "0.003",  //original 
                // "--conf", "0.1",
                "--weights", "runs/train/exp19/weights/best.pt",
                "--source", "data/images/zidane.jpg"
                // "--image", "data/images/jordan.jpg"
                // "--image", "data/images/she2.jpg"  
                // "--image", "data/images/lfpw_testset_image_0178.png" 
                // "--image", "data/yolo_300W/images/test/ibug_image_047_1.jpg" 
                // "--image", "data/yolo_300W/images/test/ibug_image_048.jpg" //bad
                // "--image", "data/yolo_300W/images/test/ibug_image_076_1.jpg" 
                // "--image", "data/yolo_300W/images/test/ibug_image_065_1.jpg" 
                // "--image", "data/yolo_300W/images/test/helen_testset_2988557119_1.jpg" 
                // "--image", "data/yolo_300W/images/train/helen_trainset_2203538277_1.jpg"
                // "--image", "data/yolo_300W/images/test/helen_testset_315336719_1.jpg" 
                // "--image", "data/yolo_300W/images/test/helen_testset_2973812613_1.jpg" 
                // "--kpt-label"

                
                // // to export model  
                // "--weights", "runs/train/exp19/weights/best.pt",
                // "--batch", "1",
                // "--img", "640",
                // "--simplify",
                // "--export-nms"
                // // python export.py --weights "path to the pre-trained ckpt"  --img 640 --batch 1 --simplify --export-nms # export at 640x640 with batch size 1

            ]
        }
    ]
}

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import  ssl
ssl._create_default_https_context = ssl._create_unverified_context

你可能感兴趣的:(Machine,Learning,Computer,Vision,人工智能,深度学习)