说明线性回归的原理
应用LinearRegression或SGDRegressor实现回归预测
记忆回归算法的评估标准及其公式
说明线性回归的缺点
说明过拟合与欠拟合的原因以及解决方法
说明岭回归的原理即与线性回归的不同之处
说明正则化对于权重参数的影响
说明L1和L2正则化的区别
说明逻辑回归的原理
知道逻辑回归的应用场景
说明分类(主要针对二分类)问题的评估标准
应用classification_report实现精确率、召回率计算
应用roc_auc_score实现指标计算
应用joblib实现模型的保存与加载
说明K-means算法原理
说明K-means的性能评估标准轮廓系数
说明K-means的优缺点
线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。
那么怎么理解呢?我们来看几个例子
上面两个例子,我们看到特征值与目标值之间建立的一个关系,这个可以理解为回归方程。
线性回归当中的关系有两种,一种是线性关系,另一种是非线性关系。在这里我们只能画一个平面更好去理解,所以都用单个特征举例子。
注释:如果在单特征与目标值的关系呈直线关系,或者两个特征与目标值呈现平面的关系
更高维度的我们不用自己去想,记住这种关系即可
注释:为什么会这样的关系呢?原因是什么?我们后面 讲解过拟合欠拟合重点介绍
如果是非线性关系,那么回归方程可以理解为:w1x1+w2x22+w3x32
假设刚才的房子例子,真实的数据之间存在这样的关系
真实关系:真实房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) + 0.254×城镇犯罪率
那么现在呢,我们随意指定一个关系(猜测)
随机指定关系:预测房子价格 = 0.25×中心区域的距离 + 0.14×城市一氧化氮浓度 + 0.42×自住房平均房价 + 0.34×城镇犯罪率
请问这样的话,会发生什么?真实结果与我们预测的结果之间是不是存在一定的误差呢?类似这样样子
那么存在这个误差,我们将这个误差给衡量出来
总损失定义为:
如何去减少这个损失,使我们预测的更加准确些?既然存在了这个损失,我们一直说机器学习有自动学习的功能,在线性回归这里更是能够体现。这里可以通过一些优化方法去优化(其实是数学当中的求导功能)回归的总损失!!!
如何去求模型当中的W,使得损失最小?(目的是找到最小损失对应的W值)
线性回归经常使用的两种优化算法
理解:X为特征值矩阵,y为目标值矩阵。直接求到最好的结果
缺点:当特征过多过复杂时,求解速度太慢并且得不到结果
理解:α为学习速率,需要手动指定(超参数),α旁边的整体表示方向
沿着这个函数下降的方向找,最后就能找到山谷的最低点,然后更新W值
使用:面对训练数据规模十分庞大的任务 ,能够找到较好的结果
我们通过两个图更好理解梯度下降的过程
所以有了梯度下降这样一个优化算法,回归就有了"自动学习"的能力
sklearn提供给我们两种实现的API, 可以根据选择使用
给定的这些特征,是专家们得出的影响房价的结果属性。我们此阶段不需要自己去探究特征是否有用,只需要使用这些特征。到后面量化很多特征需要我们自己去寻找
回归当中的数据大小不一致,是否会导致结果影响较大。所以需要做标准化处理。同时我们对目标值也需要做标准化处理。
均方误差(Mean Squared Error)MSE)评价机制:
注:y^i为预测值,¯y为真实值
def mylinearregression():
"""
线性回归预测房子价格
:return:
"""
lb = load_boston()
#
# print(lb.data)
#
# print(lb.target)
# 对数据集进行划分
x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.3, random_state=24)
# 需要做标准化处理对于特征值处理
std_x = StandardScaler()
x_train = std_x.fit_transform(x_train)
x_test = std_x.fit_transform(x_test)
# print(x_train)
# 对于目标值进行标准化
std_y = StandardScaler()
y_train = std_y.fit_transform(y_train)
y_test = std_y.transform(y_test)
y_test = std_y.inverse_transform(y_test)
# 使用线性模型进行预测
# 使用正规方程求解
lr = LinearRegression()
# # 此时在干什么?
lr.fit(x_train, y_train)
y_lr_predict = std_y.inverse_transform(lr.predict(x_test))
print(lr.coef_)
print("正规方程预测的结果为:", y_lr_predict)
print("正规方程的均方误差为:", mean_squared_error(y_test, y_lr_predict))
# 梯度下降进行预测
sgd = SGDRegressor()
#
sgd.fit(x_train, y_train)
print("SGD的权重参数为:", sgd.coef_)
#
y_sgd_predict = std_y.inverse_transform(sgd.predict(x_test))
#
print("SGD的预测的结果为:", y_sgd_predict)
#
# # 怎么评判这两个方法好坏
print("SGD的均方误差为:", mean_squared_error(y_test, y_sgd_predict))
return None
我们也可以尝试去修改学习率
sgd = SGDRegressor(learning_rate='constant', eta0=0.001)
此时我们可以通过调参数,找到学习率效果更好的值。
梯度下降 | 正规方程 |
---|---|
需要选择学习率 | 不需要 |
需要迭代求解 | 一次运算得出 |
特征数量较大可以使用 | 需要计算方程,时间复杂度高O(n3) |
梯度下降(Gradient Descent),原始的梯度下降法需要计算所有样本的值才能够得出梯度,计算量大,所以后面才有会一系列的改进。
随机梯度下降(Stochastic gradient descent)是一个优化方法。它在一次迭代时只考虑一个训练样本。
随机平均梯度法(Stochasitc Average Gradient),由于收敛的速度太慢,有人提出SAG等基于梯度下降的算法
Scikit-learn:SGDRegressor、岭回归、逻辑回归等当中都会有SAG优化
当算法在某个数据集当中出现这种情况,可能就出现了过拟合现象。
在这里针对回归,我们选择了正则化。但是对于其他机器学习算法如分类算法来说也会出现这样的问题,除了一些算法本身作用之外(决策树、神经网络),我们更多的也是去自己做特征选择,包括之前说的删除、合并一些特征
在学习的时候,数据提供的特征有些影响模型复杂度或者这个特征的数据点异常较多,所以算法在学习的时候尽量减少这个特征的影响(甚至删除某个特征的影响),这就是正则化
注:调整时候,算法并不知道某个特征影响,而是去调整参数得出优化的结果
线性回归的损失函数用最小二乘法,等价于当预测值与真实值的误差满足正态分布时的极大似然估计;岭回归的损失函数,是最小二乘法+L2范数,等价于当预测值与真实值的误差满足正态分布,且权重值也满足正态分布(先验分布)时的最大后验估计;LASSO的损失函数,是最小二乘法+L1范数,等价于等价于当预测值与真实值的误差满足正态分布,且且权重值满足拉普拉斯分布(先验分布)时的最大后验估计
岭回归,其实也是一种线性回归。只不过在算法建立回归方程时候,加上正则化的限制,从而达到解决过拟合的效果
All last four solvers support both dense and sparse data. However, only 'sag' supports sparse input when `fit_intercept` is True.
class _BaseRidgeCV(LinearModel):
def __init__(self, alphas=(0.1, 1.0, 10.0),
fit_intercept=True, normalize=False, scoring=None,
cv=None, gcv_mode=None,
store_cv_values=False):
rd = Ridge(alpha=1.0)
rd.fit(x_train, y_train)
print("岭回归的权重参数为:", rd.coef_)
y_rd_predict = std_y.inverse_transform(rd.predict(x_test))
print("岭回归的预测的结果为:", y_rd_predict)
print("岭回归的均方误差为:", mean_squared_error(y_test, y_rd_predict))
逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛。
看到上面的例子,我们可以发现其中的特点,那就是都属于两个类别之间的判断。逻辑回归就是解决二分类问题的利器
逻辑回归的输入就是一个线性回归的结果。
逻辑回归最终的分类是通过属于某个类别的概率值来判断是否属于某个类别,并且这个类别默认标记为1(正例),另外的一个类别会标记为0(反例)。(方便损失计算)
那么如何去衡量逻辑回归的预测结果与真实结果的差异呢?
逻辑回归的损失,称之为对数似然损失,公式如下:
怎么理解单个的式子呢?这个要根据log的函数图像来理解
看到这个式子,其实跟我们讲的信息熵类似。
接下来我们呢就带入上面那个例子来计算一遍,就能理解意义了。
我们已经知道,log§, P值越大,结果越小,所以我们可以对着这个损失的式子去分析
同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。
默认将类别数量少的当做正例
原始数据的下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/
数据描述
(1)699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤
相关的医学特征,最后一列表示肿瘤类型的数值。
(2)包含16个缺失值,用”?”标出。
def logisticregression():
"""
逻辑回归进行癌症预测
:return: None
"""
# 1、读取数据,处理缺失值以及标准化
column_name = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',
'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
'Normal Nucleoli', 'Mitoses', 'Class']
data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",
names=column_name)
# 删除缺失值
data = data.replace(to_replace='?', value=np.nan)
data = data.dropna()
# 取出特征值
x = data[column_name[1:10]]
y = data[column_name[10]]
# 分割数据集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
# 进行标准化
std = StandardScaler()
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
# 使用逻辑回归
lr = LogisticRegression()
lr.fit(x_train, y_train)
print("得出来的权重:", lr.coef_)
# 预测类别
print("预测的类别:", lr.predict(x_test))
# 得出准确率
print("预测的准确率:", lr.score(x_test, y_test))
return None
在很多分类场景当中我们不一定只关注预测的准确率!!!!!
比如以这个癌症举例子!!!我们并不关注预测的准确率,而是关注在所有的样本当中,癌症患者有没有被全部预测(检测)出来。
在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)
那么怎么更好理解这个两个概念
还有其他的评估标准,F1-score,反映了模型的稳健型
print("精确率和召回率为:", classification_report(y_test, lr.predict(x_test), labels=[2, 4], target_names=['良性', '恶性']))
假设这样一个情况,如果99个样本癌症,1个样本非癌症,不管怎样我全都预测正例(默认癌症为正例),准确率就为99%但是这样效果并不好,这就是样本不均衡下的评估问题
最终AUC的范围在[0.5, 1]之间,并且越接近1越好
# 0.5~1之间,越接近于1约好
y_test = np.where(y_test > 2.5, 1, 0)
print("AUC指标:", roc_auc_score(y_test, lr.predict(x_test)))
当训练或者计算好一个模型之后,那么如果别人需要我们提供结果预测,就需要保存模型(主要是保存算法的参数)
# 使用线性模型进行预测
# 使用正规方程求解
lr = LinearRegression()
# 此时在干什么?
lr.fit(x_train, y_train)
# 保存训练完结束的模型
joblib.dump(lr, "test.pkl")
# 通过已有的模型去预测房价
model = joblib.load("test.pkl")
print("从文件加载进来的模型预测房价的结果:", std_y.inverse_transform(model.predict(x_test)))
我们可以怎样最有用地对其进行归纳和分组?我们可以怎样以一种压缩格式有效地表征数据?这都是无监督学习的目标,之所以称之为无监督,是因为这是从无标签的数据开始学习的。
我们先来看一下一个K-means的聚类效果图
我们以一张图来解释效果
# 取500个用户进行测试
cust = data[:500]
km = KMeans(n_clusters=4)
km.fit(cust)
pre = km.predict(cust)
注:对于每个点i 为已聚类数据中的样本 ,b_i 为i 到其它族群的所有样本的距离最小值,a_i 为i 到本身簇的距离平均值。最终计算出所有的样本点的轮廓系数平均值
如果b_i>>a_i:趋近于1效果越好, b_i<
silhouette_score(cust, pre)
`python
cust = data[:500]
km = KMeans(n_clusters=4)
km.fit(cust)
pre = km.predict(cust)
#### 问题:如何去评估聚类的效果呢?
## 6、Kmeans性能评估指标
### 6.1 轮廓系数
[外链图片转存中...(img-VZSzJFpD-1652517121407)]
> 注:对于每个点i 为已聚类数据中的样本 ,b_i 为i 到其它族群的所有样本的距离最小值,a_i 为i 到本身簇的距离平均值。最终计算出所有的样本点的轮廓系数平均值
### 6.2 轮廓系数值分析
[外链图片转存中...(img-7h07h4QB-1652517121408)]
- 分析过程(我们以一个蓝1点为例)
- 1、计算出蓝1离本身族群所有点的距离的平均值a_i
- 2、蓝1到其它两个族群的距离计算出平均值红平均,绿平均,取最小的那个距离作为b_i
- 根据公式:极端值考虑:如果b_i >>a_i: 那么公式结果趋近于1;如果a_i>>>b_i: 那么公式结果趋近于-1
### 6.3 结论
**如果b_i>>a_i:趋近于1效果越好, b_i<
注意:聚类一般做在分类之前