学习笔记《pytorch 入门》完整的模型训练套路(CIFAR10 model)

文章目录

    • 准备数据集(训练和测试)
    • 搭建神经网络
    • 创建损失函数,分类问题使用交叉熵
    • 创建优化器
    • 设置训练网络的一些参数
    • 进入训练循环
    • 准备进入测试步骤
    • 完整代码:

准备数据集(训练和测试)

  • 训练数据集
train_data = torchvision.datasets.CIFAR10("dataset2", train=True, transform=torchvision.transforms.ToTensor(),download=True) # class:CIFAR10
  • 测试用的数据集
test_data = torchvision.datasets.CIFAR10("dataset2", train=False, transform=torchvision.transforms.ToTensor(),
                                          download=True)

查看数据集长度(len())

train_data_size = len(train_data)# 50000
test_data_size = len(test_data)#10000

利用dataloader加载数据集(DataLoader())

train_dataloader = DataLoader(train_data, batch_size=64) # {DataLoader:782}
test_dataloader = DataLoader(test_data, batch_size=64)

搭建神经网络

先看一下cifar10 model structure,然后搭建神经网络
学习笔记《pytorch 入门》完整的模型训练套路(CIFAR10 model)_第1张图片

  1. 从外部引入可以

    from my_first_model import *
    
    !my_first_model
    import torch
    from torch import nn
    from torch.nn import Sequential
    
    
    class Net(nn.Module):
    
        def __init__(self):
            super(Net, self).__init__()
            self.model1 = Sequential(
                nn.Conv2d(3, 32, 5, 1, 2),
                nn.MaxPool2d(2),
                nn.Conv2d(32, 32, 5, 1, 2),
                nn.MaxPool2d(2),
                nn.Conv2d(32, 64, 5, 1, 2),
                nn.MaxPool2d(2),
                nn.modules.flatten.Flatten(),
                nn.Linear(64*4*4, 64),
                nn.Linear(64, 10)
            )
    
        def forward(self, x):
            x = self.model1(x)
            return x
    
    
    if __name__ == '__main__':
        net = Net()
        input = torch.ones(64, 3, 32, 32)
        output = net(input)
        print(output.shape)
    
    net = Net()
    
  2. 直接内部搭建也行

创建损失函数,分类问题使用交叉熵

loss_fn = nn.CrossEntropyLoss() #{CrossEntropyloss}

创建优化器

learning_rate = 0.01
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)

设置训练网络的一些参数

  1. 记录训练的次数

    total_train_step = 0
    
  2. 记录测试的次数

    total_test_step = 0
    
  3. 训练的轮数

    epoch = 10
    
  4. 添加tensorboard绘制曲线

    writer = SummaryWriter("train_cifar10_logs")
    
  5. 记录开始时间

    start_time = time.time()
    

进入训练循环

  1. 第一层训练轮数循环

    for i in range(epoch):
    
  2. 第二层:每一轮训练对dataloader的遍历训练

    # 训练步骤开始
    for data in train_dataloader:
         imgs, targets = data 
    

    每一个data都是一个列表

    outputs = net(imgs)
    # 损失
    loss = loss_fn(outputs, targets)
    # 优化模型
            optimizer.zero_grad() # 首先取消梯度
            loss.backward() # 回溯
            optimizer.step() # Performs a single optimization step (parameter update)
    # 训练一次就完成,一次就是训练了64张图片,因为batch-size = 64
    total_train_step += 1
    # 每训练一百次就打印一下信息
     if total_train_step % 100 == 0:
            end_time = time.time()
            print(f"训练时间: {end_time - start_time}")
            print(f"训练次数: {total_train_step}, Loss: {loss.item()}")
            writer.add_scalar("train_loss", loss.item(), total_train_step)
    

准备进入测试步骤

net.eval() # 进入评估模式
total_test_loss = 0 # 测试时总的损失值
total_accuracy = 0 # 正确的个数
with torch.no_grad(): # 禁用梯度计算
    for data in test_dataloader: # 遍历dataloader
        imgs, targets = data # 取得图片和目标
        outputs = net(imgs) # 进入神经网络产生输出
        loss = loss_fn(outputs, targets) # 损失
        total_test_loss += loss.item()
        accuracy = (outputs.argmax(1) == targets).sum().item()
        total_accuracy += accuracy # 和目标匹配正确的个数
print(f"整体测试集上的Loss: {total_test_loss}")
print(f"整体测试集上的正确率:{total_accuracy / test_data_size}")
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step += 1 # 

torch.save(net, f"net_{i}") # 保存模型
print("模型已保存")

writer.close() # 关闭writer

完整代码:

# @TIME:  2023/1/25 20:01
# @AUTHOR:  我是NGL
import torch
from torch import nn
from torch.nn import Sequential


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        self.model1 = Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.modules.flatten.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


if __name__ == '__main__':
    net = Net()
    input = torch.ones(64, 3, 32, 32)
    output = net(input)
    print(output.shape)
# @TIME:  2023/1/25 19:31
# @AUTHOR:  我是NGL
from torch.utils.tensorboard import SummaryWriter

from my_first_model import *
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Linear
from torch.nn.modules.flatten import Flatten
from torch.utils.data import DataLoader
import time

# 准备数据集(训练和测试)

train_data = torchvision.datasets.CIFAR10("dataset2", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10("dataset2", train=False, transform=torchvision.transforms.ToTensor(),
                                          download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print(f"训练数据集的长度: {train_data_size}")
print(f"测试数据集的长度: {test_data_size}")

# 利用dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建神经网络模型
net = Net()

# 损失函数 分类问题使用交叉熵
loss_fn = nn.CrossEntropyLoss()

# 优化器
learning_rate = 0.01
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

# 添加tensorboard
writer = SummaryWriter("train_cifar10_logs")

# 开始时间
start_time = time.time()

for i in range(epoch):
    print(f"---------------第 {i+1} 轮训练开始------------")
    # 训练步骤开始
    for data in train_dataloader:
        imgs, targets = data
        outputs = net(imgs)
        # 损失
        loss = loss_fn(outputs, targets)
        # 优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            end_time = time.time()
            print(f"训练时间: {end_time - start_time}")
            print(f"训练次数: {total_train_step}, Loss: {loss.item()}")
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    net.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            outputs = net(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss += loss.item()
            accuracy = (outputs.argmax(1) == targets).sum().item()
            total_accuracy += accuracy
    print(f"整体测试集上的Loss: {total_test_loss}")
    print(f"整体测试集上的正确率:{total_accuracy / test_data_size}")
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
    total_test_step += 1

    torch.save(net, f"net_{i}")
    print("模型已保存")

writer.close()

学习来源:吹一下土堆大大,大家有兴趣看一下他的pytoch教学视频
https://www.bilibili.com/video/BV1hE411t7RN?p=1&vd_source=4b9bc16687589a734dd252399f19f55b

你可能感兴趣的:(pytorch学习,pytorch,学习,深度学习)