- Pytorch(5): LeNet,ResNet,RNN,LSTM代码
weixin_51182518
rnn卷积深度学习python
1、LeNet5与ResNet18实战第一部分:LeNet5代码:importtorchfromtorchimportnnfromtorch.nnimportfunctionalasFclassLenet5(nn.Module):def__init__(self):super(Lenet5,self).__init__()self.conv_unit=nn.Sequential(nn.Conv2d
- Chrony 无法同步时间的排查过程
中年如酒
Linuxlinux
文章目录1.问题描述2.检查chrony.conf配置3.检查Chronyd进程状态4.检查Chrony是否在跟踪时间5.检查Chrony是否获取了NTP源6.检查防火墙7.检查网络连接性8.根因9.解决方案10.验证1.问题描述在一台Linux服务器上配置了Chrony作为NTP客户端,配置文件/etc/chrony.conf指定了两个NTP服务器:2.检查chrony.conf配置cat/et
- 本地Oracle数据库复制数据到Apache Hive的Linux服务器集群的分步流程
weixin_30777913
数据库大数据hive
我们已经有安装ApacheHive的Linux服务器集群,它可以连接到一个OracleRDS数据库,需要在该Linux服务器上安装配置sqoop,然后将OracleRDS数据库中所有的表数据复制到Hive。为了将本地Oracle数据库中的所有表数据复制到ApacheHiveLinux服务器集群中,您可以遵循以下详细步骤:第一步:安装和配置Sqoop1.下载并安装Sqoop您可以从ApacheSqo
- 前端解决跨域问题的三种方法
web13638179351
前端html面试前端nginx服务器
一、cors后端程序员提供的解决跨域访问的方法,和前端程序员没有关系,定义后端程序代码让所有的前端程序都可以访问后端的数据,后端程序告诉服务器这个后端程序的数据任何前端请求都可以访问,服务器就不再执行跨域访问拦截数据的操作。因为博主目前主攻前端对后端并不熟悉,因此这种方法暂不详细解答。二、服务器代理proxy2.1步骤(1)修改Nginx或者Apache服务器文件,目前博主使用的是Nginx代理(
- JMeter 集成到 Jenkins 实现 CI CD过程
小赖同学啊
jmeter专栏jmeterjenkinsci/cd
将JMeter集成到Jenkins实现CI/CD可以实现自动化的性能测试,以下是详细的实现方式和配置参数说明:1.环境准备JMeter安装:确保JMeter已经安装在Jenkins服务器或者可被Jenkins访问的节点上。记录JMeter的安装路径,例如/opt/apache-jmeter-5.4.1。Jenkins安装与配置:安装Jenkins并确保其正常运行。可以通过浏览器访问Jenkins的
- DeepSeek:大模型时代的“破局者”
qq_44233281
ai深度学习人工智能
DeepSeek,是谁?DeepSeek,中文名深度求索,是一家成立于2023年7月17日的创新型科技公司,由知名量化资管巨头幻方量化创立,法定代表人系裴湉。公司专注于开发先进的大语言模型(LLM)和相关技术,致力于在人工智能领域实现技术突破和创新应用。在成立后的短时间内,DeepSeek取得了令人瞩目的成绩。2024年1月5日,发布首个包含670亿参数的大模型DeepSeekLLM,该模型从零开
- 深度学习-133-LangGraph之应用实例(二)使用面向过程和面向对象的两种编程方式构建带记忆的聊天机器人
皮皮冰燃
深度学习深度学习人工智能LangGraph
文章目录1通用配置1.1大语言模型ChatOllama1.2函数trim_messages1.2.1函数概述1.2.2函数参数1.2.3测试应用2面向过程编程2.1不裁剪历史信息2.1.1创建图2.1.2调用图2.2裁剪历史信息2.2.1创建图2.2.2调用图3面向对象编程3.1定义类MyState3.2定义类AIChat3.3应用4附录4.1问题及解决tokenizer4.2参考附录1通用配置L
- 数据挖掘中特征发现与特征提取的数学原理
调皮的芋头
数据挖掘人工智能AIGC计算机视觉
好的,我将深入研究数据挖掘中特征发现与特征提取的数学原理,涵盖统计学基础、特征工程的数学方法、以及在机器学习和深度学习中的应用。我会整理相关数学公式和理论,包括主成分分析(PCA)、独立成分分析(ICA)、线性判别分析(LDA)、信息增益、互信息、方差分析等统计方法,并结合金融量化交易的实际应用,确保内容既有理论深度,又能落地实践。完成后,我会通知您!1.统计学基础:描述性统计、方差分析、相关性与
- 脑洞打开话题:deepseek这么火,什么时候能完全代替人类?
噔噔噔噔@
网络
AI完全代替人类是一个复杂且充满争议的话题,涉及技术、伦理、社会和经济等多个方面。目前来看,AI在某些领域已经表现出超越人类的能力,但要完全代替人类仍然面临许多挑战和限制。以下是关于AI何时可能完全代替人类的一些分析和思考:1.技术层面的限制尽管AI在某些特定任务上已经超越了人类(如图像识别、语音识别、围棋等),但要完全代替人类,AI需要在以下几个方面取得突破:通用人工智能(AGI)目前的AI主要
- 未来至少十年时间里,哪些行业的岗位更有发展前景且很难被人工智能替代?
向贤
人工智能人工智能
未来至少十年时间里,哪些行业的岗位更有发展前景且很难被人工智能替代?在人工智能技术快速迭代的背景下,未来十年内,以下六大类行业因其对人类独特能力的依赖,将展现出强大的抗替代性,并成为具有长期发展潜力的领域:一、医疗健康行业:生命科学与人文关怀的交织复杂决策与不确定性应对医学诊断需要结合患者个体差异、病史和社会背景进行综合判断,AI虽能辅助影像识别和数据分析,但面对突发并发症或罕见病例时,医生的临床
- 【TVM教程】为 NVIDIA GPU 自动调度神经网络
HyperAI超神经
TVM神经网络人工智能深度学习TVMGPUNVIDIA语言模型
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng针对特定设备和工作负载的自动调优对于获得最佳性能至关重要。本文介绍如何使用auto-scheduler为NVIDIAGPU调优整个神经网络。为自动调优神经网络,需要将网络划分为小的子图并独立调优。每个子图被视为
- AI人工智能机器学习之监督线性模型
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器监督学习框架下的线性模型,以LinearRegression线性回归和LogisticRegression逻辑回归为示例,从代码层面测试和讲述监督学习中的线性模型。2、监督学习之线性模型-简介监督学习和线性模型是的两个重要概念。监督学习是一种机器学习任务,其中模型在已标记的数据集上进行训练。线性模型是一类通过线性组合输入特征来进行预测的模型。线性模型的基本形式可
- 计算机网络概述
少天z
网络
1.基本概念计算机网络:由多台计算机和网络设备通过通信链路连接,实现资源共享和信息交换。节点:网络中的设备,如计算机、服务器、路由器、交换机等。链路:连接节点的物理或逻辑通道,如光纤、电缆、无线信号等。2.网络分类按覆盖范围:局域网(LAN):覆盖小范围,如家庭、办公室。城域网(MAN):覆盖城市范围。广域网(WAN):覆盖国家或全球,如互联网。按传输介质:有线网络:如以太网、光纤。无线网络:如W
- 大数据模型:技术赋能,引领未来
大模型教程
人工智能AI大模型大模型语言模型
随着互联网、物联网、人工智能等技术的飞速发展,我们正身处一个数据爆炸的时代。数据,已经成为这个时代最为宝贵的资源之一。而如何挖掘和利用这些海量数据,为企业和社会创造价值,正是大数据模型所追求的目标。本文将从以下几个方面对大数据模型进行探讨:概述、技术原理、应用场景、挑战与发展趋势。一、概述大数据模型是一种基于数据挖掘和机器学习技术的分析方法,通过对海量数据进行处理和分析,挖掘出有价值的信息和知识,
- Node.js定义以及性能优化
Sunshinedada
node.js
Node.jsNode.js是一个基于ChromeV8引擎的JavaScript运行时,广泛用于构建高性能的网络应用。以下是一些常见的Node.js面试题及其解答,帮助你准备面试:1.什么是Node.js?Node.js是一个基于ChromeV8引擎的JavaScript运行时,允许开发者使用JavaScript编写服务器端代码。它采用事件驱动、非阻塞I/O模型,适合构建高性能、可扩展的网络应用。
- 【深度学习】PYTORCH框架中采用训练数据“CIFAR-10”实现RESNET50
别出BUG求求了
深度学习深度学习pytorchcifar-10resnet50神经网络
一、ResNet网络结构二、基本块三、RESNET50代码实现resnet50.pyimporttorchimporttorch.nnasnnfromtorch.nnimportfunctionalasFclassResNet50BasicBlock(nn.Module):def__init__(self,in_channel,outs,kernerl_size,stride,padding):s
- 人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具
学步_技术
自动驾驶人工智能人工智能深度学习自动驾驶机器学习
人工智能深度学习系列—深度解析:交叉熵损失(Cross-EntropyLoss)在分类问题中的应用人工智能深度学习系列—深入解析:均方误差损失(MSELoss)在深度学习中的应用与实践人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具人工智能深度学习系列—探索余弦相似度损失:深度学习中的相似性度量神器人工智能深度学习系列—深度学习中的边界框回归新贵:GHM(GeneralizedH
- 点云配准(点云拼接)论文综述
点云SLAM
点云数据处理技术点云数据处理点云配准DeepICPICP深度学习配准方法特征匹配
点云配准(点云拼接)论文综述1.引言点云配准(PointCloudRegistration)是三维计算机视觉与机器人感知领域的核心任务,其目标是通过几何变换将多个点云对齐至统一坐标系,形成完整的场景表示。该技术广泛应用于自动驾驶、增强现实、工业检测、医学影像等领域。随着传感器技术(如LiDAR、RGB-D相机)的进步与深度学习的发展,点云配准方法经历了从传统优化算法到数据驱动模型的演变。本文系统综
- 解读 DeepSeek 关键 RL 算法 GRPO
进一步有进一步的欢喜
LLM算法DeepSeekGRPO
DeepSeekGRPO:面向超大规模RLHF的梯度正则化策略优化算法引言在当下人工智能蓬勃发展的浪潮里,DeepSeek无疑是一颗耀眼的明星,频繁出现在各类科技前沿讨论中,热度持续攀升。从惊艳的模型表现,到不断拓展的应用场景,DeepSeek正以强劲之势重塑着行业格局。大家不难发现,无论是复杂的自然语言处理任务,还是充满挑战的智能推理难题,DeepSeek都能展现出卓越的性能。而这斐然成绩的背后
- Spring Cloud + Nacos + K8S 零影响发布方案
淡黄的Cherry
微服务相关kubernetesspringcloud容器
问题描述在生产环境中使用springcloud框架,由于服务更新过程中,容器服务会被直接停止,部分请求仍被分发到终止的容器,导致服务出现500错误,这部分错误请求数据占用比较少,因为Pod滚动更新都是一对一。因为部分用户会产生服务器错误的情况,考虑使用优雅的终止方式,将错误请求降到最低,直至滚动更新不影响用户。这里结合nacos使用来分析。在K8s的滚动升级中,比如5个Pod服务在升级过程中,会先
- 详细介绍人工智能学习框架
日记成书
反正看不懂系列人工智能
人工智能学习框架是开发者用于构建、训练和部署机器学习模型的核心工具。以下从框架分类、核心框架介绍、学习方法三个维度展开详解:一、主流人工智能框架全景图(一)基础框架层TensorFlow(Google)核心优势:工业级部署能力,支持移动端(TFLite)、浏览器(TF.js)、服务器(TFServing)特色功能:SavedModel格式跨平台兼容,XLA编译器优化计算图适用场景:生产环境部署、大
- 视频裂变加群推广分享引流源码
酷爱码
phpPHP
源码介绍视频裂变加群推广分享引流源码最近网上很火,很多人都在用,适合引流裂变推广测试环境:PHP7.4(PHP版本不限制)第一次访问送五次观看次数,用户达到观看次数后需要分享给好友或者群,好友必须点击推广链接后才会增加观看次数。引导用户转发Q+V分享,达到快速裂变引流的效果源码上传服务器或者虚拟空间即可运行,无后台,前台显示的内容在源码里面修改,已经对接好了视频接口,需要显示自己上传视频的要搭建一
- netty详细使用
酷爱码
编程学习netty
Netty是一个基于Java的高性能网络应用框架,主要用于快速开发高性能的网络通信应用程序。以下是Netty的详细使用步骤:添加Netty依赖:在项目的pom.xml中添加Netty的依赖项,例如:io.nettynetty-all4.1.66.Final创建Netty服务器:编写一个Netty服务器应用程序,监听指定的端口,并处理网络请求。以下是一个简单的示例:publicclassNettyS
- 从零开始玩转TensorFlow:小明的机器学习故事 4
山海青风
机器学习tensorflow人工智能
探索深度学习1场景故事:小明的灵感前不久,小明一直在用传统的机器学习方法(如线性回归、逻辑回归)来预测学校篮球比赛的胜负。虽然在朋友们看来已经很不错了,但小明发现一个问题:当比赛数据越来越多、球队的特征越来越复杂时,模型的准确率提升得很慢。有一天,小明在学校图书馆翻看杂志时,看到这样一句话:“就像人的大脑有上百亿神经元,神经网络能够学习复杂的信息映射,从而取得卓越的表现。”他瞬间来了灵感:“或许我
- 【深度学习】Transformer入门:通俗易懂的介绍
知识靠谱
深度学习深度学习transformer人工智能
【深度学习】Transformer入门:通俗易懂的介绍一、引言二、从前的“读句子”方式三、Transformer的“超级阅读能力”四、Transformer是怎么做到的?五、Transformer的“多视角”能力六、Transformer的“位置记忆”七、Transformer的“翻译流程”八、Transformer为什么这么厉害?九、Transformer的应用十、总结一、引言在自然语言处理(N
- electron部署更新服务器
zhhao1
部署vercelelectron
1.electron更新有两种方式windows应用安装打包有两种1.squirrel第一种通过electron包里的autoUpdater模块,设置github用户名/repo仓库名,会自动拼接feedurl为https://update.electronjs.org/${用户名}/${仓库名}/${arch}/${version},更新服务器update.electronjs.org会去git
- Python常见库的使用
浪子西科
Pythonpython开发语言
文章目录人工智能与机器学习1.NumPy2.Pandas3.Scikit-learn4.TensorFlow5.PyTorch数据可视化1.Matplotlib2.Seaborn网络请求与爬虫1.Requests2.Scrapy自动化测试1.unittest2.pytest自然语言处理1.NLTK2.SpaCy数据库操作1.SQLite32.SQLAlchemy日期和时间处理1.datetime2
- 服务器/mac m1配置python环境
LoveSeven.Lin
macospython开发语言
目录服务器配置环境一、安装miniconda二、创建环境三、激活环境四、conda安装Macm1配置环境一、安装Miniforge3二、创建环境三、激活环境四、安装tensorflow五、测试运行服务器配置环境一、安装miniconda#step1:获取安装shell脚本文件wgethttps://repo.continuum.io/miniconda/Miniconda3-latest-Linu
- GAN(Generative Adversarial Network)—生成对抗网络
算法资料吧!
深度学习机器学习人工智能
GAN(GenerativeAdversarialNetwork)代表了深度学习中生成建模的尖端方法,通常利用卷积神经网络等架构。生成建模的目标是自主识别输入数据中的模式,使模型能够生成与原始数据集相似的新示例。本文涵盖了您需要了解的有关GAN、GAN架构、GAN的工作原理以及GAN模型类型等的所有信息。目录什么是生成对抗网络?GAN的类型GAN的架构GAN是如何工作的?生成对抗网络(GAN)的应
- 中国AI震撼教育界!DeepSeek让个性化学习“弯道超车”?
盼达思文体科创
经验分享
引言家人们,最近科技圈简直炸锅了!中国AI的一股强大力量——DeepSeek横空出世,它带来的震撼可远不止于科技领域,更是像一颗重磅炸弹,投向了传统的教育行业。在过去,教育常常是“一刀切”的模式,就像给所有学生都穿上同样尺码的鞋子,合适与否只有学生自己知道。而如今,随着人工智能技术的飞速发展,个性化学习成为了教育界追求的新目标。DeepSeek的出现,无疑为实现这一目标带来了新的曙光。DeepSe
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc